
CS3:
Introduction to Symbolic

Programming

Spring 2006 Nate Titterton
nate@berkeley.edu

Lecture 5:

Announcements

• Nate's office hours this week only:
- Thursday, 2-4, in 329 Soda
- (Usually, they are Wed 2-4)

Schedule

Introduction to Higher Order ProceeduresMar 13-179

Lecture: finishing recursion
Lab: Miniproject #2

Mar 6-108

Lecture: Midterm 1
Lab: Recursion III

Feb 27-Mar 37

Lecture: HOLIDAY
Lab: Recursion II

Feb 20-246

Lecture: Introduction to Recursion
Lab: Recursion

Feb 13-175

Lecture: Data abstraction in DbD
Lab: Miniproject I

Feb 6-104

Announcements
• Reading for this week

- Simply Scheme, chapter 11
- Difference between Dates, Part II

• Questions for the Jon (the reader), regarding
homework grades?

- email Jon at cs3-ra@imail.eecs.berkeley.edu

mailto:cs3-ra@imail.eecs.berkeley.edu

Announcements
• Recursion in Lab this week.

Read Chapter 11 in the textbook before lab.

Recursion
• Everyone thinks it's hard!

- (well, it is… aha!-hard, not complicated-hard)

• The first technique (in this class) to handle
arbitrary length inputs.
- There are other techniques, easier for some

problems.

• What is it?

An algorithmic technique where a function, in order to
accomplish a task, calls itself with some part of the
task.

All recursion procedures need…

1. Base Case (s)
• Where the problem is simple enough to be solved

directly

2. Recursive Cases (s)
1. Divide the Problem

• into one or more smaller problems
2. Invoke the function

• Have it call itself recursively on each smaller part
3. Combine the solutions

• Combine each subpart into a solution for the whole

(define (find-first-even sent)
 (if (even? (first sent))

 (first sent) ;base case: return
 ; that even number
 (find-first-even (bf sent))
 ;recurse on the
 ; rest of sent
))

Problem: find the first even number in a sentence of numbers

 (if <test>

 (<do the base case>)

 (<do the recursive case>)

Count the number of words in a sentence

(define (count sent)
 (if (empty? (bf sent))
 1 ;base case: return 1
 (+ 1
 (count (bf sent)) ;recurse on the
 ; rest of sent

))

(define (find-evens sent)
 (cond (;base case (??)
)
 (;rec case 1: odd
)
 (;rec case 2: even

)
))

(define (find-evens sent)
 (cond ((empty? (bf sent)) ;base case
 (first sent))
 ((odd? (first sent)) ;rec case 1
 (find-evens (bf sent)))
 (else ;rec case 2: even
 (se (first sent)
 (find-evens (bf sent))))
))

Problem: find all the even numbers in a sentence of numbers

Base cases can be tricky
• By checking whether the (bf sent) is empty,

rather than sent, we won't choose the recursive
case correctly on that last element!
- Or, we need two base cases, one each for the last element

being odd or even.
• Better: let the recursive cases handle all the

elements

Your book describes this well

(define (count sent)
 (if (empty? sent)
 0 ;base case: return 0
 (+ 1
 (count (bf sent)) ;recurse on the
 ; rest of sent

))

(define (count sent)
 (if (empty? (bf sent))
 1 ;base case: return 1
 (+ 1
 (count (bf sent)) ;recurse on the
 ; rest of sent

))

Count the number of words in a sentence

(define (find-evens sent)
 (cond ((empty? sent) ;base case
 '())
 ((odd? (first sent)) ;rec case 1: odd
 (find-evens (bf sent)))
 (else ;rec case 2: even
 (se (first sent)
 (find-evens (bf sent))))
))

Problem: find all the even numbers in a sentence of numbers

(define (find-evens sent)
 (cond ((empty? (bf sent)) ;base case
 (first sent))
 ((odd? (first sent)) ;rec case 1: odd
 (find-evens (bf sent)))
 (else ;rec case 2: even
 (se (first sent)
 (find-evens (bf sent))))
))

> (find-evens '(2 3 4 5 6))

 (se 2 (se 4 (se 6 ())))
 (2 4 6)

(se 2

(se 4
(se 6

()

sent = (2 3 4 5 6)

sent = (3 4 5 6)

sent = (4 5 6)

sent = (5 6)

sent = (6)

sent = ()

Why is recursion hard?
• ONE function:

- replicates itself,
- knows how to stop,
- knows how to combine the “replications”

• There are many ways to think about recursion: you
absolutely do not need to understand all of them.
- Knowing recursion WILL help with all sorts of ways while

programming, even if you don’t often use it.

Midterm 1: Feb 27th (in two weeks).
- Location: 50 Birge
- Time: In the lecture slot, plus 20 minutes

- (4:10-5:30)

- Everything we’ve covered, including the coming
two weeks on recursion.

- Review session Saturday, Feb 25th, 2-4pm.
- 430 Soda (Wozniak lounge).

- Practice exam in reader (do this all at once)
- Check Announcements for more practice items,

solutions

Sample problem for midterm 1

Consider a procedure named double that, given a word
as argument, returns a two-word sentence. The first word
is two. The second word is the result of adding an "s" to
the end of the argument.

(two boxs)(double 'box)
(two buss)(double 'bus)
(two apples)(double 'apple)
intended resultexpression

Now consider some incorrect implementations of
double. For each one, indicate what the call
(double 'apple)
will return. If no value is returned because the
procedure crashes, give the error message that
results.

(define (double wd)
 (sentence 'two (wd 's)))

(define (double wd)
 (sentence 'two (sentence wd s)))

(define (double wd)
 (sentence 'two '(word wd s)))

