
CS3:
Introduction to Symbolic

Programming

Spring 2006 Nate Titterton
nate@berkeley.edu

Lecture 2:
Introduction, and Conditionals

Announcements

• Nate's office hours:
- Wednesday, 2 - 4
- 329 Soda

• Signup for card keys at 387 Soda Hall

• I'm not hearing about any book or reader
supply problems. Yes?

Any questions?

Grading?
Working at home?

Schedule

Lecture: Introduction to recursion
Lab: Recursion

Feb 13-175

Lecture: Data abstraction in DbD
Lab: Miniproject 1

Feb 6-104

Lecture: Case Studies
Lab: Work with Difference between Dates

Jan 30-Feb 43

Lecture: Introduction, Conditionals
Lab: Conditionals

Jan 23-272

Lecture: <holiday>
Lab: Introduction, words and sentences

Jan 16-201

Review

• What is Scheme?
- A easy yet very powerful language
- The "Listener" makes testing easy

• Functions and functional programming

• Words and sentences
- Not usually part of scheme, but makes our early

work more accessible

Some programming

• “first-two”
- takes a word, returns the first two letters (as a

two-letter word)

• “two-first”
- takes a sentence of two words, returns the first

letter of each (as a two-letter word)

A big idea

• Data abstraction

- Constructors: procedures to make a piece of
data
-word and sentence

- Selectors: procedures to return parts of that
data piece
-first, butfirst, etc.

Some review

• Quoting something means treating it
literally:
- you are interested in the thing follows, rather

than what is named
- Quoting is a shortcut to putting literal things

right in your code. As your programs get
bigger, you will do this less and less.

Quoting is something unique to Scheme
(and similar language)

Coming up: conditionals

• Conditionals allow programs to do different
things depending on data values

- To make decisions

• "Intelligence" depends on this

Structure of conditionals

(if <true? or false?>
 <do something if true>
 <do something if false>)

(define (smarty x)
 (if (odd? x)
 (se x '(is odd))
 (se x '(is even)))
)

true? or false?

• We need Booleans: something that represents
TRUE or FALSE to the computer
-#t
-#f

- in practice, everything is true except #f

false is true!

(really, false is #t)

Predicates

• Predicates are procedures that return
#t or #f

- by convention, their names end with a "?"

odd? (odd? 3)  #t
even? (even? 3)  #f
vowel? (vowel? 'a)  #t

(vowel? (first 'fred))  #f
sentence? (sentence? 'fred)  #f

Coming up: testing

• There is much more to programming than
writing code

- Testing is crucial, and an emphasis of this
course

- Analysis
- Debugging
- Maintenance.
- "Design"

