

CS 3 (Clancy) Solutions and grading standards for exam 2
Spring 2004

1

Exam information

77 students took the exam. Scores ranged from 6 to 30, with a median of 23 and an
average of 22.2. There were 42 scores between 23 and 30, 22 between 16 and 22, and
10 between 6 and 15. (Were you to receive a grade of 23 on both your midterm exams,
46 on the final exam, plus good grades on homework and quizzes, you would receive
an A–; similarly, a test grade of 16 may be projected to a B–.)

There were two versions of the exam, A and B. (The version indicator appears at the
bottom of the first page.)

If you think we made a mistake in grading your exam, describe the mistake in writ-
ing and hand the description with the exam to your lab t.a. or to Mike Clancy. We
will regrade the entire exam (even if the only error is a mistake in adding up your
points).

Solutions and grading standards

Problem 0 (2 points)

You lost 1 point on this problem for each of the following:

• you earned some credit on a problem and did not put your name on the page,

• you failed to indicate who you were sitting next to, or

• you did not indicate your lab section or t.a.

The reason for this apparent harshness is that exams can get misplaced or come
unstapled, and we would like to make sure that every page is identifiable. We also
need to know where you will expect to get your exam returned. Finally, it is some-
times useful to know where particular students were sitting.

Problem 1 (7 points)

In part a, you were to write a procedure named

winning-moves

 that, given a Tic-Tac-
Toe board represented as a word of X’s, O’s, and underscores, along with a player,
returns a sentence containing all the winning moves for the player. Your solution was
to use procedures already provided in the Tic-Tac-Toe program where possible; you
were told at the exam not to worry about duplicate moves. In part b, you were to say
which sentence would be returned for the board

O _XXOOX

 (version A) or

OOX_XX_O_

 (version B).

The simplest solution started by converting the board argument into triples, using
the

find-triples

 procedure. Each triple is checked for a potential win using the

my-
pair?

 procedure, and only the winning triples are kept. Then the X’s or O’s are
removed from each winning triple, leaving the moves. Here’s the code.

(define (winning-moves board me)
(every

(lambda (triple) (keep number? triple))
(keep

(lambda (triple) (my-pair? triple me))
(find-triples board))))

CS 3 (Clancy) Solutions and grading standards for exam 2
Spring 2004

2

A slightly more complicated variation was

(define (winning-moves board me)
(accumulate

sentence
(keep

number?
(accumulate

word
(keep

(lambda (triple) (my-pair? triple me))
(find-triples board))))))

Part a was worth 5 points, split roughly 3 points for isolating the triples that contain
a winning move and 2 for isolating the winning moves from among those triples. The
following were common errors that each received a 1-point deduction.

• Omission of the outermost

every

, as in

(define (winning-moves board me)
(keep

number?
(keep

(lambda (triple) (my-pair? triple me))
(find-triples board))))

A variation on this error was substitution of the outer

every

 with a

keep

.

• Adding an extra

every

, which produced empty words along with move numbers in
the return sentence.

• Forgetting the outermost

accumulate

 in the complicated version above.

• Reimplementing

my-pair?

 instead of calling it directly.

• Returning

#f

 instead of an empty sentence.

• Using a content-free name for a procedure or placeholder.

• Substitution of

i-can-win?

 for

my-pair?

.

Some errors for which more points were deducted were the following.

• Forgetting to call

find-triples

. This lost 2 points.

• Misuse of

i-can-win?

, as in

(define (winning-moves board me)
(keep

(lambda (triple) (i-can-win? triple me))
(find-triples board)))

The flaw here is that

i-can-win?

 takes a sentence of triples as argument, not a sin-
gle triple. This solution would have received a 2, losing 1 point for isolating the
winning triples and 2 points for isolating moves within those triples.

• Using recursion. You lost all the points for the part (isolating winning triples, or
isolating individual moves) you used it in.

CS 3 (Clancy) Solutions and grading standards for exam 2
Spring 2004

3

The answer to part b is

(4 3 1)

 on version A and

(4 9 7)

 on version B. You could earn
points on this part only if your solution to part a was complete enough to distinguish
among the possibilities. The answer and the explanation were each worth 1 point, for
a total of 2 for this part.

One correct explanation merely traces the calls to

find-triples

 and the higher-order
procedures. In version A, for example:

1.

Find-triples

 returns

(1o3 4xx oox 14o oxo 3xx 1xx 3xo)

 for the given board.

2. The outer

keep

 returns

(4xx 3xx 1xx)

.

3. The

every

 returns

(4 3 1)

.

Problem 2 (8 points)

This problem involved providing a single Roman numeral that would distinguish all
possibilities for omitting a call to

butfirst

 in the

roman-sum

 procedure, then determin-
ing the result of supplying that value to

decimal-value

 using three different buggy
versions of

roman-sum

. The two exam versions differed in the last version of

roman-
sum

.

Here’s what the various tests in

roman-sum

 check for.

The last three

cond

 clauses are the ones that may contain the bug. Complete testing
with one test case would then involve a Roman numeral that

• contains a prefix/prefixed pair;

• ends with an unprefixed Roman digit;

• contains an unprefixed Roman digit earlier in the Roman numeral.

Examples are

xlii

 and

cxli

. Many of you provided a Roman numeral that ended in a
prefix/prefixed pair, which wouldn’t distinguish a correct version of

roman-sum

 from a
version missing the

butfirst

 call in line 4.

test circumstances

(empty? number-sent)

succeeds for a Roman numeral ending in a
prefix/prefixed pair

(empty? (bf number-sent))

succeeds for a Roman numeral ending in an
unprefixed digit

(not (starts-with-prefix? number-sent))

succeeds for an unprefixed digit not at the
end of the Roman numeral

(starts-with-prefix? number-sent)

succeeds for a Roman numeral containing a
prefix/prefixed pair

CS 3 (Clancy) Solutions and grading standards for exam 2
Spring 2004

4

Here are the various buggy versions of

roman-sum

, together with their behavior.

A single score (maximum 8 points) was given on this problem, rather than individual
scores for the two parts. Scoring proceeded as follows.

1. First, we deducted points for an inadequate test case:

–1 for a Roman numeral with both prefix/prefixed pairs and unprefixed digits
that ends in a prefix/prefixed pair, since this would not distinguish the first buggy
version from a correct version;

version of

roman-sum

behavior

(define (roman-sum number-sent)
(cond

((empty? number-sent) 0)

((empty? number-sent) (first number-sent))

((not (starts-with-prefix? number-sent))
...)

((starts-with-prefix? number-sent) ...))
)

Normal behavior for a Roman
numeral ending in a prefix/
prefixed pair; crash in second call
to

first

 in

starts-with-prefix?

 when
checking the last digit in a
Roman numeral ending in an
unprefixed digit.

(define (roman-sum number-sent)
(cond

((empty? number-sent) 0)
((empty? (bf number-sent)) ...)
((not (starts-with-prefix? number-sent))

(+ (first number-sent)

 (roman-sum number-sent)))
((starts-with-prefix? number-sent) ...))

)

Infinite recursion results from an
unprefixed Roman digit that’s not
at the end of the Roman numeral.

(define (roman-sum number-sent)
(cond

((empty? number-sent) 0)
((empty? (bf number-sent)) ...)
((not (starts-with-prefix? number-sent))

...)
((starts-with-prefix? number-sent)
 (+

(- (first number-sent) (first number-
sent))

(roman-sum (bf (bf number-sent))))))
)

(version A only) The value of any
prefix/prefixed digit pair is
ignored.

(define (roman-sum number-sent)
(cond

((empty? number-sent) 0)
((empty? (bf number-sent)) ...)
((not (starts-with-prefix? number-sent))

...)
((starts-with-prefix? number-sent)
 (+ ...

(roman-sum (bf number-sent))))))

(version B only) Any prefixed
digit is counted twice in the sum.

CS 3 (Clancy) Solutions and grading standards for exam 2
Spring 2004

5

–3 for a Roman numeral with only prefix/prefixed pairs (e.g.

xliv

 or

iv

), which
would produce the correct value for versions of

roman-sum

 missing the first or sec-
ond

butfirst

 call;

–3 for a longer Roman numeral with no prefix/prefixed pairs, which would fail to
reveal omission of any of the

butfirst

 calls in the

starts-with-prefix?

cond

 clause;

–5 for a single Roman digit.

2. If you received a deduction of more than 1 point here, it’s because two of the
buggy

roman-sum

 procedures produce the same answers. We deducted an addi-
tional point if you had different answers for

roman-sum procedures that should be
producing the same answer.

3. We then deducted 1 point for each wrong result, after choosing the best explana-
tion among those that should be duplicates. Where your test case produced a
crash, you could lose 2 points; you needed both to note the crash and to say that it
happened in starts-with-prefix?.

Here is a grading example. Suppose your test case was iv. In step 1 you lost 3 points.
Your results should have been 4, 4, and 0 (version A) or 9 (version B). If your first
result didn’t match your second, you lost 1 more point in step 2. If neither your first
result nor your second was 4, you lost 1 point in step 3; you also lost 1 point if your
third result was incorrect.

As noted above, the most common error was a test case that ended in a prefix/pre-
fixed pair. Another common error was a vague or incomplete specification of where a
crash would occur; this lost 1 point. (Some of you seemed to think that the crash
would occur in the ((empty? number-sent) (first number-sent)) clause, even though an
empty number-sent would have caused roman-sum to return in the clause immedi-
ately preceding.)

Problem 3 (5 points)

In this problem, you analyzed a call to accumulate that used a buggy max procedure:
(define (max x y) ; incorrect version

(if (> x x) x y))

As you noted in lab, accumulate used with max and, say, the sentence (3 1 4 2) works
as follows.

(max 3 (max 1 (max 4 2)))

The max procedure always returns its second argument, since x is never greater
than itself. Thus accumulate used with this max procedure would always return the
last value in the sentence argument. Its result would be the correct one exactly when
the last value is the largest in the sentence argument.

That explanation is essentially what we wanted for part c. This part was worth 3
points, 2 for the answer and 1 for the justification. We didn’t require that you specify
the order of accumulation, since the opposite order would produce the same behavior.

CS 3 (Clancy) Solutions and grading standards for exam 2
Spring 2004

6

Parts a and b were worth 1 point each, with no partial credit. The two versions dif-
fered in part a: in version A, you evaluated (sent-max '(1 3 2))—the result is 2—
while in version B, you evaluated (sent-max '(2 3 1))—result is 1. You lost the part a
point if you gave a sentence instead of a number.

If you erroneously noted that the buggy max always returned its first argument
instead of its second, you earned no points for this problem.

Problem 4 (8 points)

For this problem, you were to write a procedure split that split its word argument
into subwords according to the lengths specified in its second argument. This prob-
lem was the same on both versions. Here are some solutions.

Word-by-word solution
(define (split longWord lengths)

(if (empty? lengths)
(sentence longWord)
(sentence

(first-n longWord (first lengths))
(split (butfirst-n longWord (first lengths)) (bf lengths)))))

(define (first-n wd n)
(if (= n 0) "" (word (first wd) (first-n (butfirst wd) (- n 1)))))

(define (butfirst-n wd n)
(if (= n 0) wd (butfirst-n (butfirst wd) (- n 1))))

Character-by-character accumulating solution
(define (split longWord lengths)

(helper longWord lengths "" '()))

(define (helper longWord lengths cur-word so-far)
(cond

((empty? lengths) (sentence so-far longWord))
((= (first lengths) 0)
 (helper longWord (bf lengths) "" (sentence so-far cur-word)))
(else
 (helper

(butfirst longWord)
(sentence (- (first lengths) 1) (butfirst lengths))
(word cur-word (first longWord))
so-far))))

Two more character-by-character solutions
(define (split longWord lengths)

(cond
((empty? lengths) (sentence longWord))
((= (first lengths) 0) (sentence "" (split longWord (bf lengths))))

CS 3 (Clancy) Solutions and grading standards for exam 2
Spring 2004

7

(else
(sentence

(word ; make a new first word
(first longWord)
(first

(split
(butfirst longWord)
(sentence (- (first lengths) 1) (butfirst lengths)))))

(butfirst
(split

(butfirst longWord)
(sentence (- (first lengths) 1) (butfirst lengths))))))))

(define (split longWord lengths)
(cond

((empty? lengths)
 (sentence longWord))
((= (first lengths) 0)
 (sentence "" (split longWord (butfirst lengths))))
(else
 (helper

longWord
(split

(butfirst longWord)
(sentence (- (first lengths) 1) (butfirst lengths)))))))

(define (helper longWord recursiveResult)
(sentence

(word (first longWord) (first recursiveResult))
(butfirst recursiveResult)))

In the word-by-word and the accumulating character-by-character solutions, up to 2
points was awarded for the base case and 3 for each recursive case. In the other two
character-by-character solutions, the base case and the “(= (first lengths) 0)” case
were both worth 2 points and the else case was worth 4. Common errors with corre-
sponding deductions were as follows.

• 2 points (all the base case points) were deducted for a base case of
((empty? lengths) "")

or
((empty? lengths) '())

that is, something not involving longWord.

• 1 point was deducted for a base case of
((empty? lengths) longWord)

that is, where a word was returned instead of a sentence.

• 1 point was deducted for using an empty sentence where an empty word was
required, or vice versa.

CS 3 (Clancy) Solutions and grading standards for exam 2
Spring 2004

8

There were numerous instances of word/sentence confusion. For example, some solu-
tions would make a recursive call with just the first of a sentence of numbers.
Another symptom of this confusion was a return sentence containing all the individ-
ual characters from longWord as its words.

Other students attempted an accumulating recursion but replaced the accumulator
rather than adding to it at every step.

Solutions taking the word-by-word approach and thereby taking advantage of struc-
ture provided in the problem were much more likely to be correct. (Examples of this
approach that you saw in lab were the no-vowels, sorted, occurs-in?, and thoroughly-
reversed procedures in the third week of recursion.) In particular, no one provided a
correct version of the last two character-by-character solutions above.

You were not allowed to use higher-order procedures, in particular repeated. Use of a
higher-order procedure lost you all the points for the part you used it in.

