
“Monty Hall” curriculum segment

Run the Monty Hall Game Simulation
Launch your BlueJ programming system and open the
Monty Hall project from here.

• You should see three main classes: Monty, Player, and
Display. A fourth class, Simulation, will be used
later.

• The three main classes should roughly correspond to
the class structure that you and your group worked on
previously. But, more on that later. Let's get into the
code!

We'll be focusing on the Monty class for today. This is the
main entry point for the Monty Hall game. To run the game,
you should use the play() method inside the Monty class.
Let’s do that before we look at the code.

Make a Monty instance in the usual way: right click (ctrl-click
on a Macintosh) on the box representing the Monty class.
From the context menu that appears, select new Monty(),
and call it whatever you like. This will put an instance down
at the bottom of the BlueJ frame, as usual. Right-click this
instance to invoke the play() method.

Now try playing a round of the game.
Did you win?

Run the program several more times. Try to determine from
your runs whether switching choices or staying with your initial
choice gives you the best chance of winning the car.

Tally your results. Did you generally

• switch and win
• switch and lose
• stay and win
• stay and lose?

Post your results in this brainstorm like usual (clicking "Save
your Response" to create a new post.) After your submitted,
compare your results with everyone else.

Now that you've seen what happened when you and a bunch of
other people tried switching and not switching, do you think that
switching is a better strategy than not switching, or vice versa?
If you were on the game show and had the chance to win a car,
what would you do? Briefly explain your answer.

You might have noticed that when you did win Monty would
congratulate you. Find the method where your Monty instance
congratulates the player when they win. (Hint: it is inside the Monty
class. Double-click on the Monty box in BlueJ to look at the source
code for that class).

Select your answer from the list below:

 playResult
placeCar
revealGoat
getPlayersFinalChoice
describeResults

Modify the "Congratulations" Message

When the contestant wins the car, Monty should deliver a
few words of congratulations.

Find the current text string for Monty's congratulations
message. Then modify the statement to add some humor or
pananche.
And don't forget: Test it! Iterative testing is an essential
part of good programming skills: when you make a change,
even a small one, you need to check to see whether your
change was succesful.

Run the program several times until the contestant wins the
car. Does Monty deliver your newly revised congratulations
message?

As you know, one way to test your program is by running
the methods by themselves; that is, without running the
whole program. It is easier to see exactly what that method
is doing, and isolate any problems.

Try to run the describeResult method without running the
whole program. From your Monty instance, right-click and
look for the method describeResults().

Why can't you find it? Why is the play() method available,
but not the describeResults method?

The important difference between the two methods is in
their method headers, which describe, among other things,
who gets to run the particular method. The method
describeResult is set to private: it can only be called from
within the class.

Change the describeResult method to be a public method.
We'll run it by itself in the next activity.

You should have changed the describeResult method to
be a public method.

Now call describeResult directly (instead of by executing
Monty's play method). Does it do what you expect? Are some
of the parts of the display incorrect? Explain what you think is
happening, and compare with other students in the class.

When you play the game using the normal play method in the
Monty class, the method chooseInitialDoor is called. This is a
method of the Player class. Instead of just looking at what this
method does, try to figure out how it gets called. On the self quiz
below, check which method you think calls the initialDoor
method.
Which Monty method calls the Player initialDoor method?
Select your answer from the list below:

 playResult
getPlayersInitialChoice
placeCar
describeResults

Now that we know when the chooseInitialDoor method is
called, we will investigate more about the flow of the program.
Now try to figure out which of the Monty class methods are
called immediately after chooseInitialDoor returns. There
might be a few ways to figure this out. Let's see if you figured it
out in the same way as other people in your class. In this
brainstorm, explain how you figured which out which Monty
class methods is called immediately after
chooseInitialDoor returns.

Create a FIRST post that includes the following:

1. Compare the methods of the Monty class with your earlier

UML work.
2. List methods you created that have no corresponding

Monty methods
3. List any Monty methods that did not appear in your

design.

Then create a SECOND post that examines another student's
organization.

1. Discuss how this student's method names differ from
your own.

2. Describe which method organization you think is better,
and why. Your feedback here should be polite and
constructive.

Examine the otherDoor method

Find the otherDoor method in the Monty class.
The Monty.otherDoor method is very short and cryptic,
which makes it hard to understand. It does an important bit
of work, however: depending on which doors have been
chosen, it returns the "other door".

In the next couple of activities, we'll look into how it works.

Take a look at the otherDoor method code. Once you figure
out how it works, explain in your own words why the value
returned by otherDoor is correct.

Help the player cheat

If you were a player, wouldn't it be nice to get the car
everytime? Since we have control over the simulation, lets
do it!

Monty keeps the location of the car in a instance variable.
Right now, that variable is private. Monty is pretty smart: it
probably isn't a good idea to let just anybody know that
value. But, we can make it accessible to the Player.

1. Make the doorWithCar instance variable public instead
of private. Poor Monty.

2. Modify the Player class to take advantage of this
change. That is, so that the player always chooses the
door with the car.

Now, play the game and test your change. Does it work?
You won't get to choose the door the first time because of
your change. But, it should be pretty obvious whether to
switch or stay...

When making an instance variable or method, your choice of
public or private can have repercussions on how your code
is used!

Quiz

1.

Suppose the chooseRandomly method were recoded to take only a
single argument, namely the door not to be returned. Thus
chooseRandomly (1) should return either 2 or 3, chooseRandomly
(2) should return 1 or 3, and chooseRandomly (3) should return 1
or 2. Supply a version of chooseRandomly that works as just
described. Use as much of the existing code as possible.

2.

Modify all calls to chooseRandomly to use the one-argument version
of chooseRandomly rather than the two-argument version. Your
modified method(s) should contain as few statements as possible.

