
Practice Final Fall 2008

1 of 5

Question 1: Lists are fun!

Someone wrote this procedure list-fun.

 (define (list-fun x)

 (if (or (null? x) (not (list? x)))

 (list x)

 (let ((elem (car x)))

 (map (lambda (y) (cons elem (list-fun y))) x))))

a) What does the procedure list-fun return for x = a

b) What does the procedure list-fun return for x = ‘(a)

c) What does the procedure list-fun return for x = ‘(a b c)

d) What is the length of the list returned for x = ‘((a) (b) (c))

e) What is the domain of list-fun?

Anything, lists are treated specially, but everything else is packaged into a list

(length (list-fun ‘((a) (b) (c))) Î 3
 (list-fun '((a) (b) (c))) → (((a) (a a)) ((a) (b b)) ((a) (c c)))

(list-fun ‘(a b c)) Î ((a a) (a b) (a c))

(list-fun ‘(a)) Î ((a a))

(list-fun ‘a) Î (a)

Practice Final Fall 2008

2 of 5

Question 2: Party!
To plan an upcoming party you make an association list of ingredients that you need and
their cost.

(define simple-grocery-L ‘((cake-mix 2) (eggs 3) (soda 2)))

But what would be really cool is if you could figure out how much a cake, which is
made up of cake-mix and eggs, would cost. You’ve made up a more complicated
version of your old grocery list. It has both individual items and their costs AND
composite items and their ingredients. For example:

(define complex-grocery-L
 ‘((cake cake-mix eggs)
 (strawberry-shortcake cake strawberries whipped-cream)
 (cake-mix 2)
 (eggs 3)
 (strawberries 4)
 (whipped-cream 3)
 (soda 5)
 (salsa 3)
 (chips 4)))

Now you can write a procedure to calculate the total cost of your menu. For example:

(total-cost ‘(chips soda) complex-grocery-L) Î 9
(total-cost ‘(cake) complex-grocery-L) Î 5
(total-cost ‘(strawberry-shortcake) complex-grocery-L) Î 12

(total-cost ‘(strawberry-shortcake chips soda) complex-grocery-L)

Î 21

(define (total-cost menu grocery-info)
 (if (null? menu)
 0
 (let ((ingred (cdr (assoc (car menu) grocery-info))))
 (if (number? (car ingred))
 (+ (car ingred)
 (total-cost (cdr menu) grocery-info))
 (+ (total-cost ingred grocery-info)
 (total-cost (cdr menu) grocery-info))))))

NOTE: short version (above), long version that we went over during the review session
(below)

Practice Final Fall 2008

3 of 5

(define (total-cost menu grocery-info)
 (reduce + (map (lambda (food) (cost-of-item food grocery-info))
 menu)))
(define (cost-of-item food grocery-info)
 (let ((ingred (cdr (assoc food grocery-info))))
 (if (number? (car ingred))
 (car ingred)
 (total-cost ingred grocery-info))))

;; note the last line is different from how I did it during
;; the review session, but I was essentially copying the
;; total-cost procedure.

Question 3: Fractals
We’ve got a cool new fractal for you to try! It has ovals in it – so here is a helper
procedure to draw ovals. The new fractal is called mystery-fractal. The squares
are NOT part of the fractal! They are just to show scale! The scale is the same in
each image.

(define (draw-white-oval x1 y1 x2 y2)
 (draw-oval x1 y1 x2 y2 ‘fill ‘white))

Practice Final Fall 2008

4 of 5

a) Draw the picture for mystery-fractal for n=2.
b) Fill in the blank for n in the 4th picture

 Complete the implementation

(define (mystery-fractal x1 y1 x2 y2 n)
 (if (< n 0)
 ‘done
 (let ((xmid (/ (+ x1 x2) 2))
 (ymid (/ (+ y1 y2) 2))

(mystery-fractal
 0 0 200 200 0)

(mystery-fractal
 0 0 200 200 1)

(mystery-fractal
 0 0 200 200___) (mystery-fractal

 0 0 200 200 2)

Í y=200

Í y=300

Í y=100

Í
x
=
1
0

Í
x
=
2
0

Í
x
=
3
0

Practice Final Fall 2008

5 of 5

 (xplus (+ x2 (/ (- x2 x1) 2)))
 (yplus (+ y2 (/ (- y2 y1) 2))))

)))

 (draw-white-oval x1 y1 x2 y2)
 (mystery-fractal x1 y1 xmid ymid (- n 1))
 (mystery-fractal x2 y1 xplus ymid (- n 1))
 (mystery-fractal x1 y2 xmid yplus (- n 1))

