Gamesman Worksheet: Start thinking about your final project

The goal of this worksheet is to have you design the framework for the Gamesman final
project. There is NO coding involved in this part of the assignment. ©

Exercise 1: Representing the position

A position in Gamesman is a unique way of representing the state of the game being
played. For any game, the position must contain enough information to determine two things:
where all the pieces on the game board are and whose turn it is.

To better explain this, let’s look at an example from example from /,2,...710. In this game
a position is represented by a two-element sentence. The first word determines whose turn it is.
The letter 1 represents Left player’s turn, while the letter r represents Right player’s turn.
The second element represents the game board. In this case all the necessary board information
is contained by a non-negative integer describing how many pieces are currently down on the
game board.

Thus, a sample position might look like this: (1 7) and be drawn in Gamesman as
shown below.

Thus, it is now Left player’s turn and FELLLELLrrrrrrririrtn
there are currently seven pieces on the 0 1 2 3 4 5 6 7 8 9 10

game board.

In Tomorrow’s-Tic-Tac-Toe, a position is represented as a sentence of elements. The
first element of the sentence, represented by an x or an o, determines whose turn it is, just like in
1,2,...,10. The x stands for X—-player and the o stands for O-player. The following
elements represent the rows of the Tomorrow’s-Tic-Tac-Toe game board. Each row is made up
of the symbols representing either game pieces or empty slots. Here, an x or an o represents an
actual game piece and - represents an empty slot.

A sample position in Tomorrow’s-Tic-Tac-Toe might appear as follows: (x o—o x—— x—-)

The first element of this position indicates that it is now X— 3 | o-o
player’s turn. The rest of the position consists of words, each of 2 | x - -
which is a row. Every row contains characters, each of which represent 1 | x - -
either a game piece or an empty slot. This position indicates that both abec
X-player and O—-player have two pieces on the board. The X-

player has one piece at position al and another at position a2; O-player, at positions a3 and
c3. See Figure 1, Figure 2, and Figure 3 on the top of the following page for further examples of
various positions and their text based graphical representation.

Figure 1 Figure 2 Figure 3

(0 0—0— xX0Xx X—XO) (x oxo o—— xox ——-) (0 o—-ox— x——o0—- xX———x)
3 | o -o0 - 4 | oxo 3 | o-o0x -
2 | xx o0 x 3 | o - - 2 | x--o0 -
1 | x-xo0 2 | xox 1 | x---x

abcd 1 |/ - - - abcde
abc

Y our other handout describes all the games you can choose from in detail. On this
handout you should see the recommended position representation to use for each game. This
representation must have the ability to uniquely map to every possible instance in any game,
including information about whose turn it is and where all the game pieces are. When you
choose a game you are allowed to deviate from this suggested representation if you wish. You
have the freedom to choose any mapping you wish, because Gamesman doesn’t care how you
represent positions. The important thing is that you, the programmer, understand it. Keep in
mind that you must be able to tell, just by looking at the position, whose turn it is and where all
of the pieces lie on the board. You will provide all the tools that gamesman needs to play and
even solve your game.

a) Based on your experience playing all four new games in lab, choose the game you wish to
code for this project. Circle the game board below corresponding to your game of choice.
Now consider what your mapping of this board will be. Your mapping may be similar to that of
1,2,...,10 or Tomorrow’s-Tic-Tac-Toe, or it can be entirely unique. It should be as intuitive as
possible.

O, & ole|o|e
. o e ®e(O|@
O o|e
Surround Knight’s Dance Northcott’s Game Konane
(White to move) (White to move) (Left to move) (White to move)
(T row row row row ...) o (T #R #C WK BK WN BN) (T row row row row ...) (T L row row row row ...)

(w —w b) (w5 6 al bl £5 b5) (L 1L3RO OLIR3 1L2R1) (w "" wbwb bwb— w-wb)

My representation for a fun position mid-way through the game is:
(Draw what that board would look like in the rectangle below — what you should focus on is
making sure you understand the mapping between your chosen position, whose turn it is, and
what the board looks like.)

b) Now that you’ve come up with a mapping, let’s test its versatility. You will be required to
write a function called whose-move?, which takes one argument, a position, and returns a
word representing the name of the player whose turn it is to move. On the next page are two
sample calls from 7,2,...,10:

> (whose-move? ‘(r 5)) => Right Draw your board for (a) here...

> (whose—-move? ‘(1 2)) => Left

And now, two sample calls from Tomorrow’s Tic-Tac-Toe:

...and it’s ’s turn.

> (whose-move? '(x x—— x—— 0-0)) => X-player
> (whose-move? '(o x—— ox— x-0)) => O-player

Assume that you have already written whose—move ? for your game. Fill in the first
blank below with your answer from Part A and provide what your whose—move ? function will
return. The return value may include capital letters if you wish.

> (whose-move?)

==>

Assume that the EXACT same position as above was given to you, except that it was the
opposite player’s turn. (For example, if your game was Surround and Black had the next move,
change the position so that it’s White’s turn to move next instead, but the ordering of the pieces
is the same.) What would this position look like in your representation? Fill in this new position
below and the return value from whose-move?.

> (whose-move?)

c) Now that you’ve come up way to access whose turn it is, let’s figure out how to access the
information about the game board. You will be required to write a function called get-board

taking one argument, a position, and returning your game board representation. Below are two
sample calls from /7,2,...,10:

> (get-board ‘'‘(r 5)) => 5

> (get-board '(1 2)) = 2

And now, two sample calls from Tomorrow’s Tic-Tac-Toe:

> (get-board '(x x—-— x—-— 0-0)) => (x-— x—— 0-0)
> (get-board '(o x—— ox— x-0)) => (x-— ox- x-0)

d) Assume that you have already written get—board for your game. Fill in the first blank
below with your answer from Part A and provide what your get —board function will return.

> (get-board)

e) Assume that the EXACT same position as above was given to you, except that it was the
opposite player’s turn. (For example, if your game was Konane and White had the next move,
change the position so that it’s Black’s turn to move next instead, but the ordering of the pieces
is the same.) What would this position look like in your representation? Fill in this position
below and the return value from get-board.

> (get-board)

==>

Exercise 2: Thinking Abstract...

Now you have an understanding of get-board and whose—move?, it is time to think
about those functions in more abstract terms. Get—-board and whose-move ? each select
specific information from the position. Thus, in abstract terms, these functions are called
selectors.

The opposite of a selector, in abstract terms, is a constructor. You must construct the
position from a turn and board. Likewise, the board and turn must also be constructed from their
components. The turn is simple enough with little variance (one of 2 letters), so we do not
require a constructor function for this, although you may choose to create one anyway. On the
other hand, a board may vary in size with every game and it certainly changes state with every
move of a player.

It is important to have a specific constructor for a board, and even selectors for the board.
The following exercises will guide you in this endeavor. Refer to the drawing on the next page

for a visualization of the constructor/selector concept with respect to positions and boards. Keep
in mind that these diagrams are general and you may have to create additional constructors and
selectors for your specific implementation. You will be required to implement the abstract
functions in the diagrams below. These tools, along with the additional tools you decide to
create will make the more complicated functions much easier to conceptualize as well as keep
your program readable, both for you and your grader.

Legend: {En‘;’:} oot * *
=\ Lo

Constructor

. Mava?
I I
! 1

¢

B
i

(

&

Board

— 4 e
~{
8

Make-Board Get-Piece-At

AR\

1 1
0 2 v

T

Exercise 3: Creating a board and extracting information from your board.

ol
¢

A board in gamesman is a representation of the location of game pieces on a game board at a
particular instance in the game. The board, unlike a position, does not contain the information
concerning whose turn it is. The board can have different representations for different games. Think
about Knight’s Dance vs. Surround for a moment. In Surround, the number of pieces on the game board

increases with each move. Most slots could be empty or most could be full, depending on how long the
game has been played. For Surround, information about each slot is carried by the board, whether it is
empty or full. This requires you keep track of every slot on your game board, and since board size is
arbitrary, this could change with every game. In Knight’s Dance, however, there are always 4 game
pieces on the game board and only their location changes with each move. For Knight’s Dance, it is
simpler to represent the board by keeping track of only the game board dimensions and the location of the
4 game pieces. This consists of only six pieces of information, regardless of the game board size. The
point is that there are many ways to represent a game boards for each game and store them within your
position. Choose a representation that makes the most sense to you and is easiest to work with.

a) Based on the diagram on the previous page, make—board takes necessary input and
constructs the game board. These inputs may differ slightly for each students’ representation,
even if they are coding the same game. The following examples call make—-board for
Tomorrow’s Tic-Tac-Toe. Beneath each call to make-board is a picture of what the newly
constructed board looks like. As you can see, it is necessary to have a good understanding of
your chosen mapping.

> (make-board 3 4)

3 /] ----
. 2 | ----
resulting board: 1] - - - -
abcd

> (make-board 3 3)
31 ---
. 2 | ---
resulting board: 1] - - -
abc

b) Fill in the blanks below so that the call to make—-board results in your board from Exercise
1, part D (not including the pieces).
(num-rows) (num-cols)

> (make-board)

==> (board from Exercise 1D without pieces)

¢) Once you can create your board you must also be able to select the relevant information about
it, such as the number of rows, columns, or the contents of a particular place on the board.
Below are some sample calls from Knight’s Dance with a particular position:

> (get—num-rows (get—-board '(r 5 4 b3 d3 b4 d2)) ==> 5
> (get—-num-cols (get—-board '(1 5 4 b3 d3 b4 d2)) ==> 4
> (get-black-knight (get—-board '(1 5 4 b3 d3 b4 d2) ==> d2
> (get-white-knight (get—-board '(1 5 4 b3 d3 b4 d2) ==> b4

And now, some sample calls from Tomorrow’s Tic-Tac-Toe:

> (get—-num-rows (get—-board ' (x —-x-o0 oo-x -x—-)) ==> 3
> (get—-num-cols (get—-board ' (o ox-o oo—-x -x—-)) ==> 4
> (get-piece-at (get—-board ' (o ox-o oo-x —-x—--)) 'b2) ==> o

c¢) Assume that you have already written the selectors get—-board, get—num—-rows,
get-piece—at, and get-num-cols for your game.

Fill in the first blank below with your board from Exercise 1, part D and provide what your
get—-num-rows selector will return.

> (get-num-rows (get-board))

==>

Fill in the first blank below with your position from Exercise 1, part A and provide what your
get—-num-cols selector will return.

> (get—-num-cols (get-board))

==>

Fill in the first blank below with your board from Exercise 1, part D, then fill the second blank in
with a valid location on this board, and provide what your get-piece-at selector will return.

> (get-piece-at)

==>

Exercise 4: Representing the Move

A move in Gamesman is a representation of how you might physically move a piece on
the board. A move does not contain any information about the rest of the pieces on the board.
Rather, it represents one move made by one player. Also, because you can tell whose turn it is

just by looking at the position, the move does not contain information about which player is
making the move or whether the move is good or bad (winning or losing). The representation
should work for all types of moves, no matter if the move will result in the player winning,
losing, or tying.

Lets look at a Gamesman example from /,2,...,/0. A move in /,2,...,10 is represented as
a number (1 or 2). At most positions, the player can choose to add 1 or 2 pieces to the board,
bringing the total closer to 10 (except at position 9 where the player can only choose to put down
1 piece). Here’s an example:

Position: (1 7) LELELELLLrrrrrrrirnn
Whose Move?: Left 0 1 2 3 4 5 6 7 8 9 10

Moves: 1, 2

Position: (r 9)
Whose Move?: Right
Moves: 1

LEEErrrrrrr b rrrrr bbb rrrrri
0 1 2 3 4 5 6 7 8 9 10

A move in Tomorrow’s-Tic-Tac-Toe 1s also represented as a number, referring to the
particular slot where a piece is to be placed (see the legend below). Here are a few examples of
moves given the following position. (Note: There are no actual function calls being made
below.)

3 | ---
Position: 2 | ---
(x) 11 -=-
Whose Move?: X-player abec
Moves: al, a2, a3, bl, b2, b3, cl, c2, c3

3 | - -x
Position: 2 | xo0o
(0 —x- x00 --x) 1 | -x -
Whose Move?: O-player abc
Moves: al, cl1, a3, b3

Now consider your own move representation for your game. They don’t need to be
numbers, like in /,2,...,10, unless it suits you to do so. Remember that these four games
(Surround, Knight’s Dance, Konane, and Northcott’s Game) may have different kinds of moves
than Tomorrow’s-Tic-Tac-Toe and 1,2,...,10. Instead of just placing new pieces on the board,
some of these games involve a piece jumping from one location to the next. Thus, the move
should include information about which piece is being moved, and where to. Pretend that in
Tomorrow’s-Tic-Tac-Toe you were allowed to slide one of your existing pieces around instead of
putting a new piece on the board. What would it take to represent, for example, a slide from slot
c2 to slot b1?

Once again, the way you choose to represent your moves is entirely up to you.
Gamesman puts no restrictions on what form your moves must take, except that you are limited
to sentences and words as before. It is also a good idea to make appropriate selectors for your

move, even if they are as simple as a mapping to first or butlast. Itis important that
your program read well so that you don’t get tangled in a web of Data Abstraction Violation
(DAV) firsts and but firsts as you write your game. The time it takes to write a simple
selector which will allow you to easily read your program is far less than the time you will spend
debugging the one missing but first you forgot, not to mention the frustration you will save
yourself.

a) In later weeks of this project, you will be asked to write a function called generate-
moves. This generate-moves function takes one argument, a position, and returns a list
(not a sentence or a word) of all the moves available for the player whose turn it is. For now,
don’t worry about how this is done. This is a more challenging function than others in this
worksheet, but you will be able to tackle it easily using the abstractions you will create from
above.

This exercise will simulate generate—moves. In the first blank below, please enter
your board representation for Exercise 1 Part a. Then fill out the rest, using standard play
options (don’t apply any fancy rules, just a standard game as stated in the game sheets). You
need not use all the spaces (below) for moves, each unique move should be written once and
only once, and there’s no particular order to the moves. You may not need all the blanks...

Position: (copy position from 1.a)
Whose Move?: (copy from 1.b)
Moves: ’ ’ ’ ’

’ ’ ’ ’

Z Z Z Z

Z Z Z ’.

b) In the upcoming weeks, you will also be required to write do—move. This function takes two
arguments, a position and a move, and returns the new position which results from performing
that move on that position. Here’s an example from /,2,...,10:

> (do-move ‘(1 7) 2) ;; add 2 to the pile so far
==> (r 9)

And here’s an example from Tomorrow’s-Tic-Tac-Toe ...
> (do-move '(x x—— x—— o-o0) b3) ;; place an x on slot b3
==> (o0 xXx— X—— 0-0)

Notice that the calls to do—move change the element that determines whose move it is.
In 71,2,...,10, 1 changes to r; in Tomorrow’s-Tic-Tac-Toe, x changes to o. Now, assume you’ve
already written do—move for your game. Below, fill in the first blank with your position from
Exercise 1 Part A. For the second blank, circle one of moves you created for Part A of this

question (2.A) and write it in. Then provide the new position that would result from the do—-
move function call.

> (do-move)
==>

Exercise 4: Primitive Positions

While a game is being played, Gamesman needs to check each position to see if the game
has ended. These end-game positions are known as primitive positions. A primitive position is a
win, a loss, or a tie for the player whose turn it is. If a position is not primitive, then the
game continues.

Gamesman determines whether or not a position is primitive by calling primitive—
position, a function you will be required to write for your game. The function takes one
argument, a position, and returns the word w, 1, or t if the position is primitive. (We use w, 1,
or t instead of the words win, loss, or tie for simplicity and to make the game tree more
readable.) If the position is not primitive, then primitive—position returns #£ for that
position. Notice that some games have primitive positions resulting in ties (e.g., Tomorrow’s-
Tic-Tac-Toe); others only wins and losses (e.g., 1,2,...,10). None of the four games you
have to implement have ties, however.

Here are a few sample calls to primitive—-position from /,2,...,10:
(primitive-position (1 9)) ==> #f ;; (game is not over)
(primitive-position (r 10)) ==> 1 ;, (Right player loses)

Because the implementation of primitive positions is sometimes difficult to understand, let’s step
through a more detailed example in Tomorrow’s-Tic-Tac-Toe.

We begin with this position: (x x—o x—— oox)

Notice that it is X—playexr’s turn. This game is obviously

3 x - o0
not over because neither player has three in a row, nor have all the 2 5 % — —
spaces been occupied. Thus, a call to primitive—-position 1 | oox
would return the following. abc

(primitive-position '(x x-o x—- oox)) ==> #f
Here are the available moves for the X-player: b2, c2, b3

It is obvious that if X—-player chooses b2 as a move that he will win the game. Thus, after
choosing this move, the next position is created by calling do—move:

> (do—-move '(x oox x—— x-o0) b2)
==> (0 0ox Xx— X-0)

Now let’s look at the resulting position: 3 I x-o
(0 Xx-0 XX— OOX) 2 | xx-
l1 | o ox

abc

Notice that it is now O—player’s turn, not X—-player’s anymore. But now there are
three in a row on the board, so that means that the game is over. And because it is currently O—
player’s turn, this game ends in a loss for O-player. A call to primitive—-position
would return the following:

(primitive—-position ‘(o oox xx— x-o)) => 1

Remember, even though the X—-player won, primitive—-position returns an 1
(for 1oss) because it is currently O—player’s turn.

Assume primitive—position is already written for your game. You are required to
fill in the function calls below with three different positions for your game. The first position
must result in a 1oss for the White/Left player, the second must result in a 1oss for the Black/
Right player, and the last position must not be primitive.

(primitive-position)
=> 1 (lose for White/Left)

(primitive-position)
=> 1 (lose for Black/Right)

(primitive-position)
=> #f (not primitive)

There are many more primitive positions possible in your game. Start thinking about
how you might write primitive—-position. Perhaps you should consider using some of
the functions you will have defined as part of prior checks-offs.

A few final notes...

1.

DO NOT WAIT UNTL THE LAST MINUTE TO START. This is not a small
undertaking. You will likely run into road blocks either in design or implementation.
You will want to discuss various approaches with your lab assistants, TA’s, and Dan.

Once you have written and individually tested all of your required procedures, you should
first play your game using test—-loop. scm. Next play your game without solving in
gamesman. This will prevent wasting both your time and server computing resources.
You will also be able to play and test much larger boards without solving because the
computer can only “solve” relatively small boards. Although you will not be able to
access the extra features of gamesman associated with a solved game (such as “safe”
moves or win/loss prediction) they would be meaningless without a game that works
properly. Solve and play only after you have tested it without solving and you are
sure it works.

3. HAVE FUN! After all, it’s only a game, and games are supposed to be fun.

	Northcott’s Game
	Surround
	Knight’s Dance
	Konane
	Gamesman Worksheet: Start thinking about your final project

