
CS3:
Introduction to Symbolic

Programming

Fall 2007 Nate Titterton
nate@berkeley.edu

Lecture 14:
Lists

Schedule

13 Nov 19–23 Lecture: Introduction to the Big Project
 Advanced Lists
Lab: Work on the Big Project: checkoff #1

14 Nov 26–30 Lecture: Advanced Lists
 Scheme versus other languages
Lab: Big Project: checkoff #2

15 Dec 3–7 Lecture (guest):CS at Berkeley and outside..
Lab: Big Project: checkoff #3 and due

16 Dec 10 Lecture: Exam Review
Labs: No thank you

Dec 18
(Tuesday)

Final Exam 8-11am (?)

Any questions about the project?

Tues/Wed Thur/Fri
(Nov 20/21)

Introduction
Checkoff #1

(Nov 22/23)
Thanksgiving

(Nov 27/28)
Checkoff #2

(Nov 29/30)

(Dec 4/5)
Checkoff #3

(Dec 7th, Friday)
Due (at midnight)

Partnerships

• If you want/need a partner for the big project,
please come see me after lecture, or email.

Lists

Lists: review of new procedures
• Constructors

- append
- list
- cons

• Selectors
- car
- cdr

• HOF
- map
- filter
- reduce
- apply

Sentences(words) vs lists: constructors

cons
Takes an element and a list
Returns a list with the element
at the front, and the list
contents trailing

append
Takes two lists
Returns a list with the element
of each list put together

list
Takes any number of elements
Returns the list with those
elements

sentence
Takes a bunch of words and
sentences and puts "them" in
order in a new sentence.

Sentences(words) vs lists: selectors

car
Returns the first element of
the list

first
Returns the first word
(although, works on non-
words)

cdr
Returns a list of everything
but the first element of the
list

butfirst
Returns a sentence of
everything but the first
word (but, works on lists)

last
…

butlast
…

(define (square-all seq)
 (if (null? seq)
 '()
 (cons (square (car seq))
 (square-all (cdr seq)))))
(s-a '(1 2 3))  (cons 1 (cons 4 (cons 9 '())))

(define (square-all seq)
 (if (empty? seq)
 '()
 (se (square (first seq))
 (square-all (bf seq)))))
(s-a '(1 2 3))  (se 1 (se 4 (se 9 '())))

What is the point of cons? (2/2)

Sentence (and word) do more, though

(reverse lst)
 (if (null? lst)
 '()
 (cons (reverse (cdr lst))
 (car lst))
))

• Consider

• What will the following return?
• What is the right construction?

Sentences(words) vs lists: HOF
map

Returns a list where a func is
applied to every element of the
input list.
Can take multiple input lists.

every
Returns a sentence where a
func is applied to every
element of an input sentence
or word.

filter
Returns a list where every
element satisfies a predicate.
Takes a single list as input

keep
Returns a sentence or word
where every element
satisfies a predicate

reduce
Returns the value of applying a
function to successive pairs of
the (single) input list

accumulate
Returns the value of applying
a function to successive
pairs of the input sentence or
word

apply
Takes a function and
arguments, and applies that
function to its arguments

…

Fashion matching…
• Write a function pair-up that takes a list of

tops and a list of bottoms, and returns
matches:

(pair-up ‘(t-shirt sweatshirt tank-top)
 ‘(jeans skirt capris))
 
((t-shirt jeans) (sweat-shirt skirt)
(tank-top capris))

• And, can you write pair-all, which returns
all pairs of matches?

A few other important topics re: lists

• map can take multiple arguments

• apply
• Association lists

• Generalized lists
- And data structures they can represent

- Like Trees

map can take multiple list arguments
(map + '(1 2 3) '(100 200 300))
(101 202 303)

The argument lists have to be the same length

(define (palindrome? lst)
 (all-true?
 (map equal? lst (reverse lst))))

(palindrome?
 '(a m a n a p l a n a c a n a l p a n a m a))
  #t

apply (not the same as accumulate!)
• apply takes a function and a list, and calls

the function with the elements of the list as
its arguments:

(apply + '(1 2 3))

(apply cons '(joe (bob)))

(apply day-span
 '((january 1) (december 31)))

Association lists
• Used to associate key-value pairs

((i 1) (v 5) (x 10) (l 50) (c 100) (d 500) (m 1000))
• assoc looks up a key and returns a pair

(assoc 'c '((i 1) (v 5) (x 10) …))
 (c 100)

;; Write sale-price, which takes a list of items
;; and returns a total price
(define *price-list* '((bread 2.89) (milk 2.33)
 (cheese 5.21) (chocolate .50)
 (beer 6.99) (tofu 1.67) (pasta .69)))

(sale-price '(bread tofu))

Generalized lists
• Elements of a list can be anything, including

any list

• Lab materials discuss
- flatten (3 ways)
- completely-reverse
- processing a tree-structured directory

How about this flatten?

(define (flatten thing)
 (if (list? thing)
 (reduce _______ (map flatten thing))
 (______ thing)))

Write deep-member?

(deep-member? 'b
 '((a b) (c d) (e f) (g h i)))
 #t

(deep-member? 'x
 '((a b) (c d) (e f) (g h i)))
 #f

(deep-member? '(c d)
 '((a b) (c d) (e f) (g h i)))
 #t

Trees…
• A tree is a special kind of generalized list,

where each level has a name and a list of
children (trees):

(define (name node) (car node))
(define (children node) (cdr node))
(define (leaf? tree)
 (null? (children tree)))

1

2

Schedule

13 Nov 19–23 Lecture: Introduction to the Big Project
 Advanced Lists
Lab: Work on the Big Project: checkoff #1

14 Nov 26–30 Lecture: Advanced Lists
 Scheme versus other languages
Lab: Big Project: checkoff #2

15 Dec 3–7 Lecture (guest):CS at Berkeley and outside..
Lab: Big Project: checkoff #3 and due

16 Dec 10 Lecture: Exam Review
Labs: No thank you

Dec 18
(Tuesday)

Final Exam 8-11am (?)

Any questions about the project?

Tues/Wed Thur/Fri
(Nov 20/21)

Introduction
Checkoff #1

(Nov 22/23)
Thanksgiving

(Nov 27/28)
Checkoff #2

(Nov 29/30)

(Dec 4/5)
Checkoff #3

(Dec 7th, Friday)
Due (at midnight)

Partnerships

• If you want/need a partner for the big project,
please come see me after lecture, or email.

Lists

Lists: review of new procedures
• Constructors

- append
- list
- cons

• Selectors
- car
- cdr

• HOF
- map
- filter
- reduce
- apply

7

Sentences(words) vs lists: constructors

cons
Takes an element and a list
Returns a list with the element
at the front, and the list
contents trailing

append
Takes two lists
Returns a list with the element
of each list put together

list
Takes any number of elements
Returns the list with those
elements

sentence
Takes a bunch of words and
sentences and puts "them" in
order in a new sentence.

Some "tips":

With append, you erase the middle parentheses
 (append '(a b c) (d (e) f))
 ;; | |
 ;; X X
 -> (a b c d (e) f)

With list, you add parentheses around the arguments
 (list '(a b c) (d (e) f) (g h i))
 ;; | |
 ;; V V
 -> ((a b c) (d (e) f) (g h i))

With cons, the last argument is a list (almost always in the real world,
and always in this class). cons stretches the opening paren for that
second argument to include the first argument:

 (cons 'a '(b))
;; |
;; ---------
;; V
 -> (a b)

Spring 2006 CS3: 8

Sentences(words) vs lists: selectors

car
Returns the first element of
the list

first
Returns the first word
(although, works on non-
words)

cdr
Returns a list of everything
but the first element of the
list

butfirst
Returns a sentence of
everything but the first
word (but, works on lists)

last
…

butlast
…

(define (square-all seq)
 (if (null? seq)
 '()
 (cons (square (car seq))
 (square-all (cdr seq)))))
(s-a '(1 2 3))  (cons 1 (cons 4 (cons 9 '())))

(define (square-all seq)
 (if (empty? seq)
 '()
 (se (square (first seq))
 (square-all (bf seq)))))
(s-a '(1 2 3))  (se 1 (se 4 (se 9 '())))

What is the point of cons? (2/2)

Sentence (and word) do more, though

(reverse lst)
 (if (null? lst)
 '()
 (cons (reverse (cdr lst))
 (car lst))
))

• Consider

• What will the following return?
• What is the right construction?

Spring 2006 CS3: 11

Sentences(words) vs lists: HOF
map

Returns a list where a func is
applied to every element of the
input list.
Can take multiple input lists.

every
Returns a sentence where a
func is applied to every
element of an input sentence
or word.

filter
Returns a list where every
element satisfies a predicate.
Takes a single list as input

keep
Returns a sentence or word
where every element
satisfies a predicate

reduce
Returns the value of applying a
function to successive pairs of
the (single) input list

accumulate
Returns the value of applying
a function to successive
pairs of the input sentence or
word

apply
Takes a function and
arguments, and applies that
function to its arguments

…

Fashion matching…
• Write a function pair-up that takes a list of

tops and a list of bottoms, and returns
matches:

(pair-up ‘(t-shirt sweatshirt tank-top)
 ‘(jeans skirt capris))
 
((t-shirt jeans) (sweat-shirt skirt)
(tank-top capris))

• And, can you write pair-all, which returns
all pairs of matches?

A few other important topics re: lists

• map can take multiple arguments

• apply
• Association lists

• Generalized lists
- And data structures they can represent

- Like Trees

14

map can take multiple list arguments
(map + '(1 2 3) '(100 200 300))
(101 202 303)

The argument lists have to be the same length

(define (palindrome? lst)
 (all-true?
 (map equal? lst (reverse lst))))

(palindrome?
 '(a m a n a p l a n a c a n a l p a n a m a))
  #t

(define (all-true? lst)
 (or (null? lst)
 (and (car lst)
 (all-true? (cdr lst)))))

apply (not the same as accumulate!)
• apply takes a function and a list, and calls

the function with the elements of the list as
its arguments:

(apply + '(1 2 3))

(apply cons '(joe (bob)))

(apply day-span
 '((january 1) (december 31)))

16

Association lists
• Used to associate key-value pairs

((i 1) (v 5) (x 10) (l 50) (c 100) (d 500) (m 1000))
• assoc looks up a key and returns a pair

(assoc 'c '((i 1) (v 5) (x 10) …))
 (c 100)

;; Write sale-price, which takes a list of items
;; and returns a total price
(define *price-list* '((bread 2.89) (milk 2.33)
 (cheese 5.21) (chocolate .50)
 (beer 6.99) (tofu 1.67) (pasta .69)))

(sale-price '(bread tofu))

(define *price-list* '((bread 2.89) (milk 2.33) (cheese 5.21) (chocolate .50)
 (beer 6.99) (tofu 1.67) (pasta .69)))

(define (sale-price items))
 (* 1.0825 ;; tax, why not…
 (apply +
 (map (lambda (i) (cadr (assoc i *price-list*)))
 items))))

#|
(sale-price '(cheese milk pasta tofu) *price-list*) ;; 10.71675
(sale-price '(beer beer beer beer) *price-list*) ;; 30.2667

|#

Generalized lists
• Elements of a list can be anything, including

any list

• Lab materials discuss
- flatten (3 ways)
- completely-reverse
- processing a tree-structured directory

18

How about this flatten?

(define (flatten thing)
 (if (list? thing)
 (reduce _______ (map flatten thing))
 (______ thing)))

;; The way to think about this is to "trust
;; the recursion". "flatten" has to return a flat list, right? So, both
;; cases in the if have to return properly flattened lists.

;; what is (map flatten thing) going to return?
;; well, it has to be something like this:
;; ((a b c) (d e f) (g h i))
;; or, a "list of flat lists". The full reduce has to return, when given
;; this,
;; (a b c d e f g h i)
;; or a properly flat list. With that, you should be able to fill
;; in the first blank.

;; The second blank is also easy, when you realize that the return value
;; must be a flat list. "thing" is a word (or, more properly, not a list).
;; So, turning it into a flat list is easy!

;; Here is the solution
(define (flatten thing)
 (if (list? thing)
 (reduce append (map flatten thing))
 (list thing)))

19

Write deep-member?

(deep-member? 'b
 '((a b) (c d) (e f) (g h i)))
 #t

(deep-member? 'x
 '((a b) (c d) (e f) (g h i)))
 #f

(deep-member? '(c d)
 '((a b) (c d) (e f) (g h i)))
 #t

;; similar to solution for flatten
(define (deep-member? item gl)
 (cond ((null? gl) #f)

((list? (car gl))
 (or (equal? item (car gl))

 (deep-member? item (car gl))
 (deep-member? item (cdr gl))
))
(else ;; first element is a non-list
 (or (equal? item (car gl))
 (deep-member? item (cdr gl)))
)))

;; another way
(define (deep-member? item gl)
 (cond ((null? gl) #f)

((equal? item (car gl)) #t) ; checks with either a list or non-list as
first element

((list? (car gl))
 (or (deep-member? item (car gl))

 (deep-member? item (cdr gl))
))
(else (deep-member? item (cdr gl)))
))

20

Trees…
• A tree is a special kind of generalized list,

where each level has a name and a list of
children (trees):

(define (name node) (car node))
(define (children node) (cdr node))
(define (leaf? tree)
 (null? (children tree)))

