
CS3: 
Introduction to Symbolic 

Programming

Fall  2006 Nate Titterton
nate@berkeley.edu

Lecture 14:
Lists

Scheme vs. other programming languages



Schedule
Lecture: Lists, and introduce the big project
Lab: Lists; start on the project

Nov 20-2413

Final Exam (Saturday, 9am-11am)
     100 Lewis (Lewis?)

Dec 16th

Lecture: Guest Lecture: what is CS at UCB?
Lab: Finish up the Project
     CHECKOFF #3 – Tue/Wed
     Project Due on Fri (at midnight)

Dec 4 – Dec 815

Lecture: Lists, other languages 
Lab: Big Project
     CHECKOFF #1 – Tue/Wed
     CHECKOFF #2 – Thur/Fri

Nov 27–Dec 114



Project Check-offs

• There are 3 checkoffs
You need to do them on time in order to get 
credit for the project

3. Tell your TA which project you will do and who 
you will do it with 

4. Show your TA that you have accomplished 
something.  S/he will comment. 

5. Show that you have most of the work done: 
your TA will run your code. 



Lists



Sentences(words) vs lists: constructors

sentence
Takes a bunch of words and 
sentences and puts "them" in 
order in a new sentence.

list
Takes any number of elements
Returns the list with those 
elements

append
Takes two lists
Returns a list with the element of 
each list put together

cons
Takes an element and a list
Returns a list with the element at 
the front, and the list contents 
trailing



cons is closely tied to recursion
(define (sent-square-all sent)
  (if (empty? sent)
      '()
      (se (square (first sent))
          (sent-square-all (bf sent)))))
(ssa '(1 2 3))  (se 1 (se 4 (se 9 '())))

(define (list-square-all lst)
  (if (null? lst)
      '()
      (cons (square (car lst))
            (list-square-all (cdr lst)))))
(lsa '(1 2 3))  (cons 1 (cons 4 (cons 9 '())))



Sentences(words) vs lists: selectors

butlast
…

last
…

butfirst
Returns a sentence of 
everything but the first word 
(but, works on lists)

cdr 
Returns a list of everything 
but the first element of the list

first
Returns the first word 
(although, works on non-
words)

car
Returns the first element of 
the list



Sentences(words) vs lists: HOF

Accumulate
Returns the value of 
applying a function to 
successive pairs of the input 
sentence or word

reduce
Returns the value of applying 
a function to successive pairs 
of the (single) input list

keep
Returns a sentence or word 
where every element 
satisfies a predicate

filter 
Returns a list where every 
element satisfies a predicate.  
Takes a single list as input

every
Returns a sentence where a 
func is applied to every 
element of an input 
sentence or word.

map
Returns a list where a func is 
applied to every element of 
the input list.  
Can take multiple input lists.



What goes in a list?
• Answer: anything!

• So, 

     (word? x)

   (not (list? x))

are not the same thing!



A few other important topics re: lists

2. map can take multiple arguments

4. apply

6. Association lists

8. Generalized lists



map can take multiple list arguments
(map + '(1 2 3) '(100 200 300))
(101 202 303)

The argument lists have to be the same length

(define (palindrome? lst)
  (all-true?
    (map equal? lst (reverse lst))))

(palindrome? 
     '(a m a n a p l a n a c a n a l p a n a m a))
   #t



apply (not the same as accumulate!)
• apply takes a function and a list, and calls 

the function with the elements of the list as 
its arguments:

(apply + '(1 2 3))

(apply cons '(joe '(bob))

(apply day-span 
       '((january 1) (december 31)))



Association lists
• Used to associate key-value pairs

((i 1) (v 5) (x 10) (l 50) (c 100) (d 500) (m 1000)) 
•assoc looks up a key and returns a pair

(assoc 'c '((i 1) (v 5) (x 10) … ) )
 (c 100)

;; Write sale-price, which takes a list of items and a
;; table of item-price pairs, and returns a total price
(define *price-list* '((bread 2.89) (milk 2.33) 
                       (cheese 5.21) (chocolate .50)
                       (beer 6.99) (tofu 1.67) (pasta .69)))

(sale-price '(bread tofu) *price-list*)



Generalized lists
• Elements of a list can be anything, including 

any list

• Lab materials discuss
-flatten (3 ways)
-completely-reverse
- processing a tree-structured directory



How about this flatten?

(define (flatten thing)
   (if (list? thing)
      (reduce _______ (map flatten thing))
      (______ thing)))



Scheme versus 
other languages



Functional Programming
• In CS3, we have focused on programming 

without side-effects.
- All that can matter with a procedure is what it 

returns
- In other languages, you typically:

- Perform several actions in a sequence
- Set the value of a variable – and it stays that way

- All of this is possible in Scheme; Chapter 20 is a 
good place to start



The language Scheme
• Scheme allows you to ignore tedium and 

focus on core concepts
- The core concepts are what we are teaching!

• Other languages:
- Generally imperative, sequential
- Lots and lots of syntactic structure (built in 

commands)
- Object-oriented is very "popular" now



CS3 concepts out in the world
• Scheme/lisp does show up: scripting languages 

inside applications (emacs, autocad, Flash, etc.)

• Scheme/Lisp is used as a "prototyping" language
- to quickly create working solutions for brainstorming, 

testing, to fine tune in other languages, etc. 

• Recursion isn't used directly (often), but recursive 
ideas show up everywhere



Java

• Java is a very popular programming 
language

- Designed for LARGE programs

- Very nice tools for development

- Gobs of libraries (previous solutions) to help 
solve problems that you might want solved



PHP

• PHP

- Popular language for web development 
(combined with a web-server and database)

- Lots of features, but little overall "sense"

- Because programs in PHP execute behind a 
web-server and create, on the fly, programs in 
other languages, debugging can be onerous.



SQL resembles HOFs

• SQL if for database retrieval

• query: “Tell me the names of all the lecturers who 
have been at UCB longer than I have.” 
select name from lecturers 
 where date_of_hire < 
   (select date_of_hire from lecturers where name =
    'titterton'); 

• query: “Tell me the names of all the faculty who are 
older than the faculty member who has been here 
the longest.” 
select L1.name from lecturers as L1 where 
L1.age > 
   (select L2.age from lecturers as L2 
    where L2.date_of_hire = 
       (select min(date_of_hire) from lecturers) ); 



Problems



  

 

  

CS3: 
Introduction to Symbolic 

Programming

Fall  2006 Nate Titterton
nate@berkeley.edu

Lecture 14:
Lists

Scheme vs. other programming languages



2 

  

Spring 2006 CS3: 2  

Schedule
Lecture: Lists, and introduce the big project
Lab: Lists; start on the project

Nov 20-2413

Final Exam (Saturday, 9am-11am)
     100 Lewis (Lewis?)

Dec 16th

Lecture: Guest Lecture: what is CS at UCB?
Lab: Finish up the Project
     CHECKOFF #3 – Tue/Wed
     Project Due on Fri (at midnight)

Dec 4 – Dec 815

Lecture: Lists, other languages 
Lab: Big Project
     CHECKOFF #1 – Tue/Wed
     CHECKOFF #2 – Thur/Fri

Nov 27–Dec 114



  

 

Spring 2006 CS3: 3  

Project Check-offs

• There are 3 checkoffs
You need to do them on time in order to get 
credit for the project

3. Tell your TA which project you will do and who 
you will do it with 

4. Show your TA that you have accomplished 
something.  S/he will comment. 

5. Show that you have most of the work done: 
your TA will run your code. 



  

 

  

Lists

Click to add text



  

 

Spring 2006 CS3: 5  

Sentences(words) vs lists: constructors

sentence
Takes a bunch of words and 
sentences and puts "them" in 
order in a new sentence.

list
Takes any number of elements
Returns the list with those 
elements

append
Takes two lists
Returns a list with the element of 
each list put together

cons
Takes an element and a list
Returns a list with the element at 
the front, and the list contents 
trailing



  

 

Spring 2006 CS3: 6  

cons is closely tied to recursion
(define (sent-square-all sent)
  (if (empty? sent)
      '()
      (se (square (first sent))
          (sent-square-all (bf sent)))))
(ssa '(1 2 3))  (se 1 (se 4 (se 9 '())))

(define (list-square-all lst)
  (if (null? lst)
      '()
      (cons (square (car lst))
            (list-square-all (cdr lst)))))
(lsa '(1 2 3))  (cons 1 (cons 4 (cons 9 '())))



  

 

Spring 2006 CS3: 7  

Sentences(words) vs lists: selectors

butlast
…

last
…

butfirst
Returns a sentence of 
everything but the first word 
(but, works on lists)

cdr 
Returns a list of everything 
but the first element of the list

first
Returns the first word 
(although, works on non-
words)

car
Returns the first element of 
the list



  

 

Spring 2006 CS3: 8  

Sentences(words) vs lists: HOF

Accumulate
Returns the value of 
applying a function to 
successive pairs of the input 
sentence or word

reduce
Returns the value of applying 
a function to successive pairs 
of the (single) input list

keep
Returns a sentence or word 
where every element 
satisfies a predicate

filter 
Returns a list where every 
element satisfies a predicate.  
Takes a single list as input

every
Returns a sentence where a 
func is applied to every 
element of an input 
sentence or word.

map
Returns a list where a func is 
applied to every element of 
the input list.  
Can take multiple input lists.



  

 9

Spring 2006 CS3: 9  

What goes in a list?
• Answer: anything!

• So, 

     (word? x)

   (not (list? x))

are not the same thing!

See the slide on flatten, and compare the code on the slide to the code on 
ucwise: in the slide, we use the proper "(not (list? thing))"  rather than "(word? 
thing)", which won't be fooled by booleans and procedures (i.e., things that 
aren't words but aren't lists either).



  

 

Spring 2006 CS3: 10  

A few other important topics re: lists

2. map can take multiple arguments

4. apply

6. Association lists

8. Generalized lists



  

 11

Spring 2006 CS3: 11  

map can take multiple list arguments
(map + '(1 2 3) '(100 200 300))
(101 202 303)

The argument lists have to be the same length

(define (palindrome? lst)
  (all-true?
    (map equal? lst (reverse lst))))

(palindrome? 
     '(a m a n a p l a n a c a n a l p a n a m a))
   #t

(define (all-true? lst)
  (or (null? lst)
      (and (car lst)
           (all-true? (cdr lst)))))



  

 

Spring 2006 CS3: 12  

apply (not the same as accumulate!)
• apply takes a function and a list, and calls 

the function with the elements of the list as 
its arguments:

(apply + '(1 2 3))

(apply cons '(joe '(bob))

(apply day-span 
       '((january 1) (december 31)))



  

 13

Spring 2006 CS3: 13  

Association lists
• Used to associate key-value pairs

((i 1) (v 5) (x 10) (l 50) (c 100) (d 500) (m 1000)) 
•assoc looks up a key and returns a pair

(assoc 'c '((i 1) (v 5) (x 10) … ) )
 (c 100)

;; Write sale-price, which takes a list of items and a
;; table of item-price pairs, and returns a total price
(define *price-list* '((bread 2.89) (milk 2.33) 
                       (cheese 5.21) (chocolate .50)
                       (beer 6.99) (tofu 1.67) (pasta .69)))

(sale-price '(bread tofu) *price-list*)

(define *price-list* '((bread 2.89) (milk 2.33) (cheese 5.21) (chocolate .50)
                       (beer 6.99) (tofu 1.67) (pasta .69)))
                     
(define (sale-price items price-list)
  (* 1.0825         ;; tax, why not…
    (apply +
      (map (lambda (i) (cadr (assoc i price-list)))
           items))))

#|
(sale-price '(cheese milk pasta tofu) *price-list*)  ;; 10.71675
(sale-price '(beer beer beer beer) *price-list*)  ;; 30.2667

|#



  

 

Spring 2006 CS3: 14  

Generalized lists
• Elements of a list can be anything, including 

any list

• Lab materials discuss
-flatten (3 ways)
-completely-reverse
- processing a tree-structured directory



  

 15

Spring 2006 CS3: 15  

How about this flatten?

(define (flatten thing)
   (if (list? thing)
      (reduce _______ (map flatten thing))
      (______ thing)))

;; The way to think about this is to "trust
;; the recursion".   "flatten" has to return a flat list, right?  So, both
;; cases in the if have to return properly flattened lists.  

;; what is (map flatten thing) going to return?  
;; well, it has to be something like this:
;;    ( (a b c)   (d e f)   (g h i)  )
;; or, a "list of flat lists".  The full reduce has to return, when given
;; this,
;;    ( a b c   d e f   g h i )
;; or a properly flat list.   With that, you should be able to fill 
;; in the first blank.

;; The second blank is also easy, when you realize that the return value 
;; must be a flat list.  "thing" is a word (or, more properly, not a list).
;; So, turning it into a flat list is easy!

                  
;; Here is the solution
(define (flatten thing)
   (if (list? thing)
      (reduce append (map flatten thing))
      (list thing)))



  

 

  

Scheme versus 
other languages

Click to add text



  

 

Spring 2006 CS3: 17  

Functional Programming
• In CS3, we have focused on programming 

without side-effects.
- All that can matter with a procedure is what it 

returns
- In other languages, you typically:

- Perform several actions in a sequence
- Set the value of a variable – and it stays that way

- All of this is possible in Scheme; Chapter 20 is a 
good place to start



  

 

Spring 2006 CS3: 18  

The language Scheme
• Scheme allows you to ignore tedium and 

focus on core concepts
- The core concepts are what we are teaching!

• Other languages:
- Generally imperative, sequential
- Lots and lots of syntactic structure (built in 

commands)
- Object-oriented is very "popular" now



  

 

Spring 2006 CS3: 19  

CS3 concepts out in the world
• Scheme/lisp does show up: scripting languages 

inside applications (emacs, autocad, Flash, etc.)

• Scheme/Lisp is used as a "prototyping" language
- to quickly create working solutions for brainstorming, 

testing, to fine tune in other languages, etc. 

• Recursion isn't used directly (often), but recursive 
ideas show up everywhere



  

 

Spring 2006 CS3: 20  

Java

• Java is a very popular programming 
language

- Designed for LARGE programs

- Very nice tools for development

- Gobs of libraries (previous solutions) to help 
solve problems that you might want solved



  

 

Spring 2006 CS3: 21  

PHP

• PHP

- Popular language for web development 
(combined with a web-server and database)

- Lots of features, but little overall "sense"

- Because programs in PHP execute behind a 
web-server and create, on the fly, programs in 
other languages, debugging can be onerous.



  

 

Spring 2006 CS3: 22  

SQL resembles HOFs

• SQL if for database retrieval

• query: “Tell me the names of all the lecturers who 
have been at UCB longer than I have.” 
select name from lecturers 
 where date_of_hire < 
   (select date_of_hire from lecturers where name =
    'titterton'); 

• query: “Tell me the names of all the faculty who are 
older than the faculty member who has been here 
the longest.” 
select L1.name from lecturers as L1 where 
L1.age > 
   (select L2.age from lecturers as L2 
    where L2.date_of_hire = 
       (select min(date_of_hire) from lecturers) ); 



  

Problems

Click to add text

A set of 4 problems was handed out.  See the ucwise announcements.


