
CS3:
Introduction to Symbolic

Programming

Fall 2006 Nate Titterton
nate@berkeley.edu

Lecture 9:
Higher Order Procedures

Schedule

Lecture: Midterm #2
Lab: Start on "Lists"

Nov 13-1712

Finish HOF, Review, Exam problems
Miniproject #3: Election processing
 Note: Thursday is a "catch-up" day, and
 Friday a holiday.

Nov 6-1011

More HOF, Tic-Tac-Toe, Tree Recursion
Reading: Simply Scheme ch. 10, 15

 "Change Making" case study

Oct 30 -Nov 310

Introduction to Higher Order Procedures
Reading: Simply Scheme ch. 7-9;

 "Difference btw Dates" (HOF soln)

Oct 23-279

Finishing recursion
Miniproject #2: Number names

Oct 16-208

Announcements

• Surveys really coming this week and next
- Take the time to do these, they are required.

What is a
procedure?

(or, a function).

Treating functions as things
• “define” associates a name with a value

- The usual form associates a name with a object
that is a function

 (define (square x) (* x x))
 (define (pi) 3.1415926535)

- You can define other objects, though:
 (define *pi* 3.1415926535)
 (define *month-names*
 ‘(january february march april may
 june july august september
 october november december))

"Global variables"
• Functions are "global", in that they can be

used anywhere:
(define (pi) 3.1415926535)
(circle-area (radius)

(* (pi) radius radius))

• A "global" variable, similarly, can be used
anywhere:

(define *pi* 3.1415926535)
(circle-area (radius)

(* *pi* radius radius))

Consider two forms of “month-name”:

 (define (month-name1 date)
 (first date))

 (define month-name2 first)

Are these the same?

Why have procedures as objects?

Other programming languages
don’t (often)

Procedures can be taken as arguments…

(define (math-function? func)
 (or (equal? func +)
 (equal? func -)
 (equal? func *)
 (equal? func /)))

…and procedures can be returned from procedures

(define (choose-func name)
 (cond ((equal? name 'plus) +)
 ((equal? name 'minus) -)
 ((equal? name 'divide) /)
 (else 'sorry)))

(define (make-add-to number)
 (lambda (x) (+ number x)))

(define add-to-5 (make-add-to 5))

Higher order function (HOFs)

• A HOF is a function that takes a function as
an argument.

(define (do-math f arg1 arg2)
 (if (and (equal? arg2 0)
 (equal? f /))
 '(uh oh – divide by zero)
 (f arg1 arg2)))

The three we will focus on

• There are three main ones that work with
words and sentences:

every do something to each element

keep return only certain elements

accumulate combine the elements

• Most recursive functions that operate
on a sentence fall into:

Mapping: square-all
Counting: count-vowels, count-evens

Finding: member, first-even
Filtering: keep-evens
Testing: all-even?

Combining: sum-evens

Patterns for simple recursions

<- every

<- keep

<- accumulate

(define (square-all sent)
 (if (empty? sent)
 '()
 (se (square (first sent))
 (square-all (bf sent))
))

(square-all '(1 2 3 4 5))

(every square '(1 2 3 4 5))

Using every…

Write "my-every"

(my-every factorial '(1 2 3 4 5))
 (1 2 6 24 120)

Write "my-keep"

(my-keep odd? '(1 2 3 4 5))
 (1 3 5)

lambda
• "lambda" is a special form that returns a

function:

(lambda (param1 param2 …)
statement1
statement2
)

(lambda (x) (* x x))  [a function]
(every (lambda (x) (* x x)) '(1 2 3 4))
  (1 4 9 16)

Using lambda with define

• Is there a difference between:
(define (square x)
 (* x x))

(define square
 (lambda (x)
 (* x x)))

How about between…
(define (special? wd)
 (member? wd (member wd '(a b c x y z))))

(define (big-proc ...)
 ... lots of code ...
 (keep special? a-sentence)
 ... more code ...)

(define (big-proc ...)
 ... lots of code ...
 (keep (lambda (wd)
 (member wd '(a b c x y z)))
 a-sentence)
 ... more code ...)

CS3:
Introduction to Symbolic

Programming

Fall 2006 Nate Titterton
nate@berkeley.edu

Lecture 9:
Higher Order Procedures

2

Spring 2006 CS3: 2

Schedule

Lecture: Midterm #2
Lab: Start on "Lists"

Nov 13-1712

Finish HOF, Review, Exam problems
Miniproject #3: Election processing
 Note: Thursday is a "catch-up" day, and
 Friday a holiday.

Nov 6-1011

More HOF, Tic-Tac-Toe, Tree Recursion
Reading: Simply Scheme ch. 10, 15

 "Change Making" case study

Oct 30 -Nov 310

Introduction to Higher Order Procedures
Reading: Simply Scheme ch. 7-9;

 "Difference btw Dates" (HOF soln)

Oct 23-279

Finishing recursion
Miniproject #2: Number names

Oct 16-208

 3

Spring 2006 CS3: 3

Announcements

• Surveys really coming this week and next
- Take the time to do these, they are required.

What is a
procedure?

(or, a function).

 5

Spring 2006 CS3: 5

Treating functions as things
• “define” associates a name with a value

- The usual form associates a name with a object
that is a function

 (define (square x) (* x x))
 (define (pi) 3.1415926535)

- You can define other objects, though:
 (define *pi* 3.1415926535)
 (define *month-names*
 ‘(january february march april may
 june july august september
 october november december))

 6

Spring 2006 CS3: 6

"Global variables"
• Functions are "global", in that they can be

used anywhere:
(define (pi) 3.1415926535)
(circle-area (radius)

(* (pi) radius radius))

• A "global" variable, similarly, can be used
anywhere:

(define *pi* 3.1415926535)
(circle-area (radius)

(* *pi* radius radius))

The asterisks are convention, not required by scheme. Generally, when you
surround a global variable with asterisks, you differentiate it from other variables you
might be using inside functions (which, right now, are passed as parameters). So,
also by convention, don't surround parameter names with asterisks!

 7

Spring 2006 CS3: 7

Consider two forms of “month-name”:

 (define (month-name1 date)
 (first date))

 (define month-name2 first)

Are these the same?

Yep, these are pretty much the same in practice.

In lecture, we also showed:

(define (joe1 num1 num2)
 (+ num1 num2))

(define jo2 +)

in this case, “joe1” and “joe2” are different in the number of arguments that they can
take (“joe2” can take any number of numeric arguments, “joe1” can only take 2).

 8

Spring 2006 CS3: 8

Why have procedures as objects?

Other programming languages
don’t (often)

First-class objects (in scheme) can:
-Be named
-Be a parameter to functions
-Be returned from functions
-Be stored in other data structures

Note that functions are first class objects, but, because they are not words, they
can't be stored inside sentences. (There are other data structures we will be
looking at in a few weeks that can store functions).

 9

Spring 2006 CS3: 9

Procedures can be taken as arguments…

(define (math-function? func)
 (or (equal? func +)
 (equal? func -)
 (equal? func *)
 (equal? func /)))

 10

Spring 2006 CS3: 10

…and procedures can be returned from procedures

(define (choose-func name)
 (cond ((equal? name 'plus) +)
 ((equal? name 'minus) -)
 ((equal? name 'divide) /)
 (else 'sorry)))

(define (make-add-to number)
 (lambda (x) (+ number x)))

(define add-to-5 (make-add-to 5))

 11

Spring 2006 CS3: 11

Higher order function (HOFs)

• A HOF is a function that takes a function as
an argument.

(define (do-math f arg1 arg2)
 (if (and (equal? arg2 0)
 (equal? f /))
 '(uh oh – divide by zero)
 (f arg1 arg2)))

 12

Spring 2006 CS3: 12

The three we will focus on

• There are three main ones that work with
words and sentences:

every do something to each element

keep return only certain elements

accumulate combine the elements

Every takes two arguments: a function and a sentence (or word). The function takes
one argument, and is called on every element of the sentence (or word)

(define (factorial n)
 (if (< n 1) 1 (* n (factorial (- n 1)))))

(every factorial '(1 2 3 4 5)) --> (1 2 6 24 120)

Keep takes two arguments: a predicate (function) and a sentence (or word). The
predicate takes one argument, and is called on each element of the sentence or
word.

(keep odd? '(1 2 3 4 5 6 7)) --> (1 3 5 7)

(define (vowel? ltr) (member? ltr '(a e i o u)))
(keep vowel? 'mississippi) --> iiii

Accumulate takes two parameters: a function and a sentence (sometimes a word).
The function here, however, takes two arguments.

(accumulate + '(1 2 3 4 5)) --> 15

 13

Spring 2006 CS3: 13

• Most recursive functions that operate
on a sentence fall into:

Mapping: square-all
Counting: count-vowels, count-evens

Finding: member, first-even
Filtering: keep-evens
Testing: all-even?

Combining: sum-evens

Patterns for simple recursions

<- every

<- keep

<- accumulate

 14

Spring 2006 CS3: 14

(define (square-all sent)
 (if (empty? sent)
 '()
 (se (square (first sent))
 (square-all (bf sent))
))

(square-all '(1 2 3 4 5))

(every square '(1 2 3 4 5))

Using every…

Write "my-every"

(my-every factorial '(1 2 3 4 5))
 (1 2 6 24 120)

(define (my-every proc sent)
 (if (empty? sent)
 '()
 (se (proc (first sent))
 (my-keep (bf sent))
)))

(This version uses the “sentence” base case).

Note that the regular "every" takes care of everything but that call to proc.
That is, it takes care of
 - doing the condition (identifying the base case condition)
 - returning the proper base case value (although, every isn't so good at this)
 - doing the combination in the recursive step
 - invoking the function recursively on the smaller problem

Write "my-keep"

(my-keep odd? '(1 2 3 4 5))
 (1 3 5)

(define (my-keep pred sent)
 (cond ((empty? Sent) '())
 ((pred (first sent))
 (se (first sent)
 (my-keep pred (bf sent))))
 (else (my-keep pred (bf sent)))

Like “every”, the real “keep” takes care of everything but that call to pred.
That is, it takes care of
 - doing the condition (identifying the base case condition)
 - returning the proper base case value
 - doing the combination in the recursive step
 - invoking the function recursively on the smaller problem

 17

Spring 2006 CS3: 17

lambda
• "lambda" is a special form that returns a

function:

(lambda (param1 param2 …)
statement1
statement2
)

(lambda (x) (* x x))  [a function]
(every (lambda (x) (* x x)) '(1 2 3 4))
  (1 4 9 16)

 18

Spring 2006 CS3: 18

Using lambda with define

• Is there a difference between:
(define (square x)
 (* x x))

(define square
 (lambda (x)
 (* x x)))

 19

Spring 2006 CS3: 19

How about between…
(define (special? wd)
 (member? wd (member wd '(a b c x y z))))

(define (big-proc ...)
 ... lots of code ...
 (keep special? a-sentence)
 ... more code ...)

(define (big-proc ...)
 ... lots of code ...
 (keep (lambda (wd)
 (member wd '(a b c x y z)))
 a-sentence)
 ... more code ...)

