
CS3:
Introduction to Symbolic

Programming

Fall 2006 Nate Titterton
nate@berkeley.edu

Lecture 7:
Advanced Recursion

Schedule

Finish HOF
Miniproject #3: Election processing

Nov 6-1011

More HOFOct 30 -Nov 310

Introduction to Higher Order ProceduresOct 23-279

Finishing recursion
Miniproject #2: Number names

Oct 16-208

Advanced recursionOct 9-137

Lecture: Midterm 1
Lab: Recursion II

Oct 2-66

Midterm 1

• You did quite well
(IMO)

• Solutions will be
available soon on
the portal (check
announcements).

MT1_SCL

30.0
28.0

26.0
24.0

22.0
20.0

18.0
16.0

14.0
12.0

10.0
8.0

20

10

0

Std. Dev = 5.34
Mean = 21.6

N = 133.00

Question 1: fill in the blanks

P1

10.08.06.04.02.00.0

60

50

40

30

20

10

0

Std. Dev = 1.84
Mean = 7.1

N = 133.00

Q2: Writing stressed?, within-10?

P2A

6.05.04.03.02.01.00.0

50

40

30

20

10

0

Std. Dev = 1.31
Mean = 3.9

N = 133.00

P2B

4.03.02.01.00.0

100

80

60

40

20

0

Std. Dev = 1.04
Mean = 3.4

N = 133.00

Q3: tuesday-span

• While we were
generous, most of you
got the basic idea

P3

10.08.06.04.02.00.0

40

30

20

10

0

Std. Dev = 2.62
Mean = 6.1

N = 133.00

Q4: translating a sentence

P4

9.08.07.06.05.04.03.02.01.00.0

100

80

60

40

20

0

Std. Dev = 2.85
Mean = 7.2

N = 133.00

Q5: Data abstraction with tutors

P5A

10.08.06.04.02.00.0

60

50

40

30

20

10

0

Std. Dev = 2.90
Mean = 5.7

N = 133.00

P5B

4.03.02.01.00.0

80

60

40

20

0

Std. Dev = 1.35
Mean = 2.9

N = 133.00

(define (find-evens sent)
 (cond ((empty? sent) ;base case
 '())
 ((odd? (first sent)) ;rec case 1
 (find-evens (bf sent)))
 (else ;rec case 2: even
 (se (first sent)
 (find-evens (bf sent))))
))

Problem: find all the even numbers in sentence of numbers

> (find-evens '(2 3 4 5 6))

 (se 2 (se 4 (se 6 ())
 (2 4 6)

(se 2

(se 4
(se 6

()

sent = (2 3 4 5 6)

sent = (3 4 5 6)

sent = (4 5 6)

sent = (5 6)

sent = (6)

sent = ()

Why is recursion hard?
• ONE function:

- replicates itself,
- knows how to stop,
- knows how to combine the “replications”

• There are many ways to think about
recursion: you absolutely do not need to
understand all of them.

- "down-up": recursion as an extension of writing
many specific functions

- "many base cases": recursion as using a clone,
once you have many base cases

Patterns in basic recursion
• Mapping

- does something to every part of the input
sentence

- E.g., square-all
• Counting

- Counts the number of elements that satisfy a
predicate

- E.g., count-vowels, count-evens
• Finding

- Return the first element that satisfies predicate
(or, return rest of sentence)

- E.g., member, member-even

• Filtering
- Keep or discard elements of input sentence
- E.g., keep-evens

• Testing
- A predicate that checks that every or any element

of input satistfies a test
- E.g., all-even?

• Combining
- Combines the elements in some way…
- E.g., sentence-sum

What recursions aren’t covered by these patterns?

• Weird ones like reverse, or downup
- ... bowling ...

• "Advanced" recursions:
- when it does more than one thing at a time
- Ones that don’t traverse a single sentence

- E.g., mad-libs takes a sentence of replacement words [e.g.,
‘(fat Henry three)] and a sentence to mutate [e.g.,
 ‘(I saw a * horse named * with * legs)]

- Tree recursion: multiple recursive calls in a single
recursive step

Advanced recursions (1/3)

"when it does more than one thing at a time"

• Ones that traverse multiple sentences
- E.g., mad-libs takes a sentence of replacement

words [e.g., ‘(fat Henry three)] and a sentence to
mutate [e.g.,
 ‘(I saw a * horse named * with * legs)]

Advanced recursions (2/3)
• Recursions that have an inner and an outer

recursion

(no-vowels '(I like to type))  ("" lk t typ)

(l33t '(I like to type))  (i 1i/<3 +0 +yP3)

(strip-most-popular-letter '(cs3 is the best class)) 
(c3 i the bet cla))

(occurs-in? 'abc 'abxcde)  #f

Advanced recursions (3/3)

• Tree recursion: multiple recursive calls in a
single recursive step

• There are many, many others

Tree recursion: fibonacci
• The fibonacci sequence:

1 1 2 3 5 8 13 21 34 55

(define (fib n)
 (if (<= n 2)
 1 ;; base case
 (+ (fib (- n 1)) ;; recursive case
 (fib (- n 2)))))

sub-sentence

Write the procedure sub-sentence, which returns a middle section
of a sentence. It takes three parameters; the first identifies the
index to start the middle section, and will be 1 or greater; the
second identifies the length of the middle section, and will be 0 or
greater; and the last is the sentence to work with.

Do not use any helper procedures.
Do not use the item procedure in your solution.

(sub-sentence 2 3 '(a b c d e f g))  (b c d)
(sub-sentence 3 2 '(a b))  ()
(sub-sentence 3 0 '(a b c d e)  ()
(sub-sentence 3 9 '(a b c d e)  (c d e)

(define (sub-sentence start len sent)
 (cond ((empty? sent)
 '())

 ((> start 1)
 (sub-sentence (- start 1) len (bf sent)))
 ((> len 0)
 (se (first sent)
 (sub-sentence start (- len 1)(bf sent))))
 (else
 '())
))

sub-sentence

