
CS3:
Introduction to Symbolic

Programming

Fall 2006 Nate Titterton
nate@berkeley.edu

Lecture 4:
"Difference Between Dates"

and
data abstraction

Announcements

Schedule

Lecture: Midterm 1
Lab: Recursion II

Oct 2-66

Lecture: Introduction to Recursion
Lab: Recursion

Sep 25-295

Lecture: Data abstraction in DbD
Lab: More DbD; Miniproject I

Sep 18-224

Lecture: Case Studies
Reading: Difference between Dates

(just the first version in the reader)
Lab: Work with Difference between Dates

Sep 11-153

Lecture: <holiday>
Lab: Conditionals, Booleans, Testing

Sep 4-82

How useful has the case study
been?

Miniproject #1: this week
• You are to write cetury-day-span

- Calculate the number of days between dates in
(possibly) two different years

• Consider the central lesson of the case
study: there are easier and harder ways to
solve problems. Choose easier.

This is your first large program

• Use helper functions

• Test, and test some more.

• Reuse code that you have already written

• Add comments!

What does “understand a program” mean?

A Big Idea: abstraction

“the process of leaving out consideration of
one or more properties of a complex object
or process so as to attend to others”

• Abstracting with a new function
- (square x) instead of (* x x)
- (third sent) instead of (first (bf (bf sent)))

• Abstracting a new datatype
A datatype provides functionality necessary to

store "something" important to the program

- Selectors: to look at parts of the "something".
- Constructor: to create a new "something".
- Tests (sometimes): to see whether you have a

"something", or a "something else"

Data abstration: words and sentences

- Constructors: procedures to make a piece of
data
-word
-sentence

- Selectors: procedures to return parts of that data
piece
-first, butfirst, etc.

Benefits
• Why is "leaving out consideration of", or

"not knowing about", a portion of the
program a good thing?

• Consider two ways one can
"understand a program":

- Knowing what each function does
- Knowing what the inputs are (can be), and

what the outputs are (will be).

• Disregarding the "understanding" issue, why
might it be a good idea to "modularize" your
code?

(where modules are abstracted from each other)

Data abstraction in the DbD code

• How does the code separate out processing
of the date-format from the logic that does
the "real" work?

- Selectors
- month-name (takes a date)
- date-in-month (takes a date)
- ? month-number (takes a month name)

- Constructors? Tests?

