
Problem  (3 / 6  points):  It was a dark and mysterious recursion…
Consider the recursive procedure gather that takes a sentence of at least two single-character words (i.e., 
letters such as 'a', 'b', etc.):

;; sent-of-ltrs is a sentence of at least 2 words that are single
;;   letters 
(define (gather sent-of-ltrs)
   (cond ((empty? sent-of-ltrs) '())
         ((empty? (bf sent-of-ltrs)) 
          (se (first sent-of-ltrs)))
         ((equal? (first (first sent-of-ltrs))
                  (first (bf sent-of-ltrs)))
          (gather (se (word (first sent-of-ltrs)
                            (first (bf sent-of-ltrs)))
                      (bf (bf sent-of-ltrs)))))
         (else 
          (se (first sent-of-ltrs)
              (gather (bf sent-of-ltrs))))))

Part A (3 points). What will (gather '(a b b b c d d)) return?

This expression returns (a bbb c dd).

-1: A common mistake was to return (a bb b c dd).  Note that in the third case of 
gather, if the first two letters are equal, they are formed into a word and passed into gather 
again.  The letters are not extracted until the next letter is different.

-2: Another mistake was to return the argument as is: (a b b b c d d).

-3: No points were given for the answer: (a b c d).  No letters from the argument should 
have been removed.

Some of you put down  '(a bbb c dd) with a quote in front.  No points were taken off for 
this.  When we ask for a return value, make sure you put down whatever sTK would return, 
which is without the quote.

MT2_4A

3.02.01.00.0

120

100

80

60

40

20

0

Std. Dev = .91  
Mean = 2.5

N = 148.00



Part B (6 points).  Write gather-hof, which behaves the same as gather but uses no explicit recursion.

Solution:

(define (gather-hof sent)
   (accumulate
       (lambda (new so-far)
           (cond ((not (sentence? so-far))
                  (if (equal? new so-far)
                      (se (word new so-far))
                      (se new so-far)) )
                 ((equal? new (first (first so-far)))
                  (se (word new (first so-far)) (bf so-far)) )
                 (else (se new so-far) )) )
       sent) )

-2: If you did not take into consideration that so-far could be either a word or a sentence. 
This is similar to the trick we used in the diagonal homework with the position 
procedure.

A few of you did a cool trick where the so-far variable is always sentenced.  This 
guarantees that so-far would consistently be a sentence, eliminating the need to check for it 
being a word or sentence, or the case of taking the bf of a word.  In this case, an if with two 
cases would be sufficient:

…(lambda (new so-far)
     (if (equal? new (first (first (se so-far))) )
         (se (word new (first so-far)) (bf (se so-far)) )
         (se new so-far) ) )

-2: If you did not use accumulate correctly.

-1: If the equality check was on only (first so-far).  We must use (first (first 
so-far)) here.  Consider the case of so-far being (bb c d): it is just the letter b that 
we want to compare new to, not the entire word bb.  Also, consider the case of so-far being 
(b c d): the letter b would still be returned from (first (first so-far)) because 
(first ‘b) is still b.

-.5 to -2: If the sentence/return value of lambda is not correct.  The number of points taken 
off depended on how far your answer deviated from the correct solution.  One point was taken 
off if the return value was only (se so-far), discarding new if they were not equal.  One 
point was also taken off if (se (word new (first so-far))) was returned, 
forgetting about (bf so-far).  

Some of you kept the cond (the first two cases) from the given recursion code, and called 
accumulate in the else case.  This was unnecessary!  The problem guarantees that the 
argument given to gather is a sentence of at least two single-character words.  No points were 
taken off for this in this particular problem.  However, if you used a cond, but did not correctly 
include the call to accumulate, say, put it into else, one point was taken off for this.



REMEMBER: wd is not the same as word   A good number of you still make the procedure 
call (wd new so-far).  Make sure you know that wd is not a procedure.  The procedure 
you want to use is word.  SPELL IT OUT!  If you were to type it into sTK, you would get an 
unbound variable error because wd does not exist!  No points were taken off for this, but we 
might in the future!

MT2_4B

6.05.04.03.02.01.00.0

40

30

20

10

0

Std. Dev = 1.85  
Mean = 3.1

N = 148.00


