
CS 3 Midterm 2 Spring 2006

Read and fill in this page now

Name:

 Instructional
login (eg, cs3-ab):

 UCWISE login:

Lab section (day
and time):

T.A.:

Name of the
person sitting to

your left:
Name of the

person sitting to
your right:

You have 80 minutes to finish this test, which should be reasonable.
Your exam should contain 6 problems (numbered 0-5) on 8 total pages.

This is an open-book test. You may consult any books, notes, or other
paper-based inanimate objects available to you. Read the problems
carefully. If you find it hard to understand a problem, ask us to explain
it.

Restrict yourself to scheme constructs that we have seen in this classs.
(Basically, this excludes chapters 16 and up in Simply Scheme).

Please write your answers in the spaces provided in the test; if you need
to use the back of a page make sure to clearly tell us so on the front of
the page.

Partial credit will be awarded where we can, so do try to answer each
question.

Good Luck!

Official Use Only! No suggestions!

Problem (Pts) Your Score

Q0 (1)

Q1 (8)

Q2 (9)

Q3 (8)

Q4a (7)

Q4b (8)

Q5a (6)

Q5b (8)

Raw Total
(out of 55)

Scaled Total
(30)

Problem (1 point, 1 minute)
Put your login name on the top of each page.
Also make sure you have provided the information requested on the first page.

Problem (8 points) Tail recursion.
Write a tail-recursive definition for n-matches, which returns up to the first n
matches between two sentences. A "match" occurs when the same word is at the same
position in both sentences:

(n-matches '(a b c d) '(a b c d) 3)  (a b c)
(n-matches '(a x c) '(a b c d) 6)  (a c)
(n-matches '(c b a) '(a b c) 3)  (b)
(n-matches '(a b c) '(x y z) 2)  ()

The numeric argument to n-matches will be 0 or greater. (Note that you will get
partial credit if you write a non-tail-recursive solution to the problem.)

Login: __________________ Page -

Problem (9 points) Higher-order election research
Write a higher-order procedure named electoral-votes which takes a predicate
as its single argument. The procedure will sum up the 2008 electoral votes for states
that satisfy the predicate.

(electoral-votes california?)  55
(electoral-votes blue-state?)  212
(electoral-votes voted-for-bush-in-2004?)  286

The database of states and their electoral votes is in a global variable *states*, with
the same format as in your third miniproject:

(ca55 me04 nj15 …)

The predicate takes the state's two-letter abbreviated name as its argument. You do not
have to write these predicates; rather, you only need to write electoral-votes
such that it works properly with any proper predicate.

Do not use any explicit recursion in your solution. Make sure you define and use
accessor procedures where appropriate; you will lose some points if you don't.

3

Login: __________________ Page -

Problem (8 points) A unique bug
Write the predicate all-unique?, which takes a sentence of any length and returns

• #f, if two or more words in the sentence are identical
• #t, otherwise

Do not use any explicit recursion. (That is, use higher order functions in your solution).
Make sure to think about the full range of inputs.

Also, do not use the predefined procedures dupls-removed or appearances.

4

Login: __________________ Page -

Problem (A: 7, B: 8 points). A troubling occurrence...
Recall the occurs-in? homework assignment from earlier in the semester. This
predicate took two words as arguments, and returned #t if the first argument was
contained somewhere in the second.

This question concerns a semi-predicate version of occurs-in?, named occurs-in
(that is, without the "?"). A semi-predicate returns either #f or some scheme value
that evaluates to true. In this case, when true occurs-in returns the portion of the
second argument after and including the first argument:

(occurs-in 'ab 'xabcab)  abcab
(occurs-in 'ab 'nothere)  #f
(occurs-in "" 'anything)  anything
(occurs-in 'bb 'abbbc)  bbbc

Part A. Use the occurs-in semi-predicate to write a definition for
num-occurrences, which takes the same arguments as occurs-in and returns
the number of times that the first argument occurs within the second argument. (You
can assume that the first argument will not be empty).

(num-occurrences 'ab 'xabcab)  2
(num-occurrences 'ab 'nothere)  0
(occurs-in "" 'anything)  not defined
(num-occurrences 'bb 'abbbc)  2

Make sure that you make as few calls to occurs-in as possible within your code.
(As rationale, you could assume that occurs-in is a very slow procedure, and that if
you call it too many times it will slow down your implementation of num-
occurrences unacceptably. Do not rewrite portions of occurs-in to avoid
using it, though!)

5

Login: __________________ Page -

Part C: Your sometimes brilliant, sometimes completely-lost partner has written the
following definition of the semi-predicate occurs-in by using the full predicate
occurs-in? :

(define (occurs-in sub full)
 (if (occurs-in? sub full)
 (occurs-in-help sub (bf full) full)
 #f))

(define (occurs-in-help sub full prev-full)
 (if (occurs-in? sub full)
 (occurs-in-help sub (bf full) full)
 prev-full))

Briefly explain under which sets of inputs this procedure will:

1) return the correct value for occurs-in
2) return an incorrect value for occurs-in
3) crash or recurse infinitely (and, therefore, return no value).

Not all of these results may be possible.

6

Login: __________________ Page -

Problem (A: 6, B: 8 points) Its for the kids
Kindergarteners spend a lot of time learning words of the form consonant-vowel-consonant,
such as "cat" and "dog". This question will involve the procedure
make-kindergarten-words (abbreviated make-kw), which takes a sentence of
consonants and a sentence of vowels, and returns a sentence of all the possible
kindergarten words that can be made using those letters. The ordering of the result
sentence doesn't matter.

(make-kw '(s t) '(a o))  (sas sat sos sot tas tat tos tot)
(make-kw '() '(a o))  ()
(make-kw '(l n k t s)
 '(a e i o u))  ... A really long sentence (225 words)!

Part A. Fill in the box below to complete the solution for make-kw. Do not use any
additional helper procedures.

(define (make-kw consonants vowels)
 (every (lambda (c)
 (every (lambda (v)

)
 vowels))
 consonants))

7

Login: __________________ Page -

Part B. Complete the following recursive solution for make-kw, filling in the bodies
for recursive cases 1-3 Don’t use any higher order procedures.

(define (make-kw consonants vowels)
 (make-kw-help1 consonants vowels consonants))

(define (make-kw-help1 front vowel end)
 (cond ((or (empty? front) ;; base
cases
 (empty? vowel)
 (empty? end))
 '())

 ((and (word? front) (word? vowel) (word? end)) ;;
recursive
 ;; case 1

)

 ((and (word? front) (word? vowel)) ;;
recursive
 ;; case 2

)

 ((word? front) ;;
recursive
 ;; case 3

)
 (else ;;
recursive
 (se (make-kw-helper (first front) vowel end) ;; case 4
 (make-kw-helper (bf front) vowel end))
)
))

8

