
CS3:
Introduction to Symbolic

Programming

Spring 2006 Nate Titterton
nate@berkeley.edu

Lecture 14:
Lists

Scheme vs. other programming languages

Schedule

Final: Thursday, May 18th

12:30 – 3:30, 4 LeConte
May 1818

Lecture: Review of CS3, solving problems
Lab: NONE (the semester is over)

May 9-1417

Lecture: Guest Lecture: what is CS at UCB?
Lab: Finish up the Project

 CHECKOFF #3 – Tue/Wed
 Project Due on Fri (at midnight)

May 1-516

Lecture: Lists, other languages
Lab: Big Project

 CHECKOFF #2 – Thur/Fri

Apr 24-2815

Lists

Lists
• Lists are containers, like sentences, where each

element can be anything

- Including, another list

((beatles 4) (beck 1) ((everly brothers) 2) …)

((california 55) (florida 23) ((new york) 45))

(#f #t #t #f #f …)

Sentences(words) vs lists: constructors

sentence
Takes a bunch of words and
sentences and puts "them" in
order in a new sentence.

list
Takes any number of elements
Returns the list with those
elements

append
Takes two lists
Returns a list with the element of
each list put together

cons
Takes an element and a list
Returns a list with the element at
the front, and the list contents
trailing

Sentences(words) vs lists: selectors

butlast
…

last
…

butfirst
Returns a sentence of
everything but the first word
(but, works on lists)

cdr
Returns a list of everything
but the first element of the list

first
Returns the first word
(although, works on non-
words)

car
Returns the first element of
the list

Sentences(words) vs lists: HOF

Accumulate
Returns the value of
applying a function to
successive pairs of the input
sentence or word

reduce
Returns the value of applying
a function to successive pairs
of the (single) input list

keep
Returns a sentence or word
where every element
satisfies a predicate

filter
Returns a list where every
element satisfies a predicate.
Takes a single list as input

every
Returns a sentence where a
func is applied to every
element of an input
sentence or word.

map
Returns a list where a func is
applied to every element of
the input list.
Can take multiple input lists.

A few other important topics re: lists

2. map can take multiple arguments

4. Association lists

6. Generalized lists

map can take multiple list arguments
(map + '(1 2 3) '(100 200 300))
(101 202 303)

The argument lists have to be the same length

(define (palindrome? lst)
 (all-true?
 (map equal? lst (reverse lst))))

(palindrome? '(a m a n a p l a n a c a n a l p a n a m a))
 #t

Quiz: Can you write all-true? without if and cond?

Association lists
• Used to associate key-value pairs

((i 1) (v 5) (x 10) (l 50) (c 100) (d 500) (m 1000))
•assoc looks up a key and returns a pair

(assoc 'c '((i 1) (v 5) (x 10) …))
 (c 100)

;; Write sale-price, which takes a list of items and a
;; table of item-price pairs, and returns a total price
(define *price-list* '((bread 2.89) (milk 2.33)
 (cheese 5.21) (chocolate .50)
 (beer 6.99) (tofu 1.67) (pasta .69)))

Generalized lists
• Elements of a list can be anything, including

any list

• Lab materials discuss
-flatten (3 ways)
-completely-reverse
- processing a tree-structured directory

Scheme versus
other languages

Functional Programming
• In CS3, we have focused on programming

without side-effects.
- All that can matter with a procedure is what it

returns
- In other languages, you typically:

- Perform several actions in a sequence
- Set the value of a variable – and it stays that way

- All of this is possible in Scheme; Chapter 20 is a
good place to start

The language Scheme
• Scheme allows you to ignore tedium and

focus on core concepts
- The core concepts are what we are teaching!

• Other languages:
- Generally imperative, sequential
- Lots and lots of syntactic structure (built in

commands)
- Object-oriented is very "popular" now

CS3 concepts out in the world
• Scheme/lisp does show up: scripting languages

inside applications (emacs, autocad, Flash, etc.)

• Scheme/Lisp is used as a "prototyping" language
- to quickly create working solutions for brainstorming,

testing, to fine tune in other languages, etc.

• Recursion isn't used directly (often), but recursive
ideas show up everywhere

Java and PHP
• Java is a very popular programming

language
- Designed for LARGE programs
- Very nice tools for development
- Gobs of libraries (previous solutions) to help

solve problems that you might want solved

• PHP
- Popular course for web development (combined

with a web-server and database)
- Lots of features, but little overall "sense"
- Because programs in PHP execute behind a

web-server and create, on the fly, programs in
other languages, debugging can be onerous.

SQL resembles HOFs

• SQL if for database retrieval

• query: “Tell me the names of all the lecturers who
have been at UCB longer than I have.”
select name from lecturers
 where date_of_hire <
 (select date_of_hire from lecturers where name =
 'titteton');

• query: “Tell me the names of all the faculty who are
older than the faculty member who has been here
the longest.”
select L1.name from lecturers as L1 where
L1.age >
 (select L2.age from lecturers as L2
 where L2.date_of_hire =
 (select min(date_of_hire) from lecturers));

Problems

A list version of electoral-votes
Write a higher-order procedure named electoral-votes

which takes a predicate as its single argument. The
procedure will sum up the 2008 electoral votes for
states that satisfy the predicate.

(electoral-votes california?)  55
(electoral-votes blue-state?)  212

The database of states and their electoral votes is in a
global variable *states*:
((ca 55) (me 4) (nj 15) …)

The predicate takes the state's two-letter abbreviated
name as its argument. You do not have to write
these predicates; rather, you only need to write
electoral-votes such that it works properly with any
proper predicate.

