
CS3:
Introduction to Symbolic

Programming

Spring 2006 Nate Titterton
nate@berkeley.edu

Lecture 13:
Introduction to the big project

Lists

Schedule

Final: Wednesday, May 18thMay 18

Lecture: Open review session
Lab: NONE (the semester is over)

May 9-1417

Lecture: Final Review
Lab: Project Due

May 1-516

Lecture: Lists,
Lab: Work on the project

Apr 24-2815

Lecture: The big project
Lab: Lists; start on the project

Apr 17-2114

Lecture: MIDTERM #2
Lab: Start on "Lists"

Apr 10-1413

Midterm #2

Any questions?

The Big Project
• Three possible projects:

- Database
- Yukon
- Blocks World

• You can, and should, work in partnerships
• You will have three weeks to work on this (it

is due on the last lab)
• Worth 15% of you final grade

Project Check-offs

• There are 3 checkoffs
You need to do them on time in order to get
credit for the project

3. Tell your TA which project you will do and who
you will do it with

4. Show your TA that you have accomplished
something. S/he will comment.

5. Show that you have most of the work done:
your TA will run your code.

Due dates on the final project

(May 4-5)
Due (at midnight)

(May 2-3)
Checkoff 3

(Apr 27-28)
Checkoff 2

(Apr 25-26)

(Apr 20-21)
Checkoff 1

(Apr 18-19)
Introduction

Thur/FriTues/Wed

Only two more lectures (after this one)…

What would you like to do?

- Hear about the CS major, and other courses…
- Do exam-type problems…
- Review…

On May 9th, I plan on holding an open review session.
Other suggestions are welcome!

Lets see the
projects in action

What issues matter
• Does it work?

- This is a primary grading standard…

• Programming style
• Reading specifications carefully
• Error checking inputs (especially in the

database project)
• Adequate testing
• Code reuse (again, with the database)

Working in partnerships
• Highly recommended!

- For those of you continuing with CS, you'll be
doing this for many future projects

• Won't be faster, necessarily
- While you are less likely to get stuck, there will

be a lot of communication necessary
• A big benefit will be with testing
• Remember, only one grade is given…

- this grade will be the same, whether the project
is a solo or a partnership

Functional Programming
• In CS3, we have focused on programming

without side-effects.
- All that can matter with a procedure is what it

returns
- In other languages, you typically:

- Perform several actions in a sequence
- Set the value of a variable – and it stays that way

- All of this is possible in Scheme.

Printing, and sequencing

• With Blocks World and Yukon you will need
to display information.
- Simply Scheme chapter 20 is nice summary.
- And, all the projects have file input /output

routines that you don't need to "understand", as
well as user input routines.

Data structures
• The format of data used in these projects in

a central feature
- A "data structure" (abstract data type) is a

specification of that format. Here, generally,
lists of lists (of lists).

- Accessors and constructor allow for modularity:
letting parts of a program work independently
from other parts.

Strings versus words
• One useful data structure is a string

- Strings are surrounded by double quotes when
printed.

- Strings are a native type in Scheme.
• In CS3, you used words (sometimes

sentences) to present names and other
output to the user.
- In the real world, strings are used.

Lists
• Lists are containers, like sentences, where each

element can be anything

- Including, another list

((beatles 4) (beck 1) ((everly brothers) 2) …)

((california 55) (florida 23) ((new york) 45))

(#f #t #t #f #f …)

Sentences(words) vs lists: constructors

sentence
Takes a bunch of words and
sentences and puts "them" in
order in a new sentence.

list
Takes any number of elements
Returns the list with those
elements

append
Takes two lists
Returns a list with the element of
each list put together

cons
Takes an element and a list
Returns a list with the element at
the front, and the list contents
trailing

Sentences(words) vs lists: selectors

butlast
…

last
…

butfirst
Returns a sentence of
everything but the first word
(but, works on lists)

cdr
Returns a list of everything
but the first element of the list

first
Returns the first word
(although, works on non-
words)

car
Returns the first element of
the list

Sentences(words) vs lists: HOF

Accumulate
Returns the value of
applying a function to
successive pairs of the input
sentence or word

reduce
Returns the value of applying
a function to successive pairs
of the (single) input list

keep
Returns a sentence or word
where every element
satisfies a predicate

filter
Returns a list where every
element satisfies a predicate.
Takes a single list as input

every
Returns a sentence where a
func is applied to every
element of an input
sentence or word.

map
Returns a list where a func is
applied to every element of
the input list.
Can take multiple input lists.

