
CS3:
Introduction to Symbolic

Programming

Spring 2006 Nate Titterton
nate@berkeley.edu

Lecture 11:
Midterm #2 review

Schedule

Lecture: Lists, and ?
Lab: Work on the project

Apr 24-2815

Lecture: Lists, and introduce the big project
Lab: Lists; start on the project

Apr 17-2114

Lecture: MIDTERM #2
Lab: Start on "Lists"

Apr 10-1413

Lecture: Review
Lab: Miniproject #3

Apr 3-712
(Spring Break)Mar 27-3111

More HOF, Tic-Tac-Toe, Tree Recursion
Reading: SS 10, 15; "Change Making" case
study

Mar 20-2410

Announcements
• Midterm 2 is coming…

- Next week, 80 minutes (4:10-5:30).
- Open book, open notes, etc.
- Check for practice exams and solution on the

course portal and in the reader
• Midterm 2 review session

- This Saturday, Apr 8, 1:30-3:30
- 430 Soda (as last time)
- send email to Bobak or Andrew for suggestions.

• Fu and Hiroki (bless their hearts) will be
holding an extra lab/office-hours

- This Wednesday, April 5, 5:30 to 8pm
- in the lab room

What does midterm #2 cover?

• Advanced recursion (accumulating, multiple
arguments, etc.)

• All of higher order functions
• Those "big" homeworks (bowling, compress, and

occurs-in)
• Elections miniproject
• Reading and programs:

- Change making,
- Difference between dates #3 (HOF),
- tic-tac-toe

• SS chapters 14, 15, 7, 8, 9, 10
• Everything before the first Midterm (although, this

won't be the focus of a question)

Programming Style and Grading

• During grading, we are going to start
becoming “more strict” on style issues
- Starting with miniproject #3
- For the big project, style is important

• Why?
- Program maintenance: 6 months later, will you

know what your code does?
- Code “literacy”: sharing code

What issues of style matter?
• Keep procedures small !
• Good names for procedures and parameters
• Adequate comments

- Above and within procedures
• Put tests cases in a comment block
• Indent to aid program comprehension

• Proper use of global variables
• Avoid nesting conditional statements
• Data abstraction

Tree recursion

Advanced recursion

........................

...151010515

... 146414

... 13313

... 1212

... 111

... 10

...543210

r
o
w
s

(R)

 columns (C)

Pascal’s
Triangle

• How many ways can you choose C things from R choices?
• Coefficients of the (x+y)^R: look in row R
• etc.

(define (pascal C R)
 (cond
 ((= C 0) 1) ;base case
 ((= C R) 1) ;base case
 (else ;tree recurse
 (+ (pascal C (- R 1))
 (pascal (- C 1) (- R 1))
)))

> (pascal 2 5)

(+
(pascal 2 5)

(pascal 2 4)

(pascal 1 4)

(+

(+

(pascal 2 3)

(pascal 1 3)

(pascal 1 3)

(pascal 0 3)

(+ (pascal 2 2)
(pascal 1 2)

(pascal 1 2)
(pascal 0 2)

 1

(pascal 1 2)
(pascal 0 2)  1

 1

(+ (pascal 1 1)
(pascal 0 1)  1

 1

(+ (pascal 1 1)  1
(pascal 0 1)  1

 1
(+ (pascal 1 1)  1

(pascal 0 1)  1

Midterm like
Problems…

Tree-recursion (1 of 2)
- Consider a set of three

coins: a penny, worth 1
cent; a nickle, worth 5
cents; and a dime, worth
10 cents. Write a
procedure named
possible-amounts which
takes a number n, and
returns a sentence of all
the possible amounts
that any n coins of these
three types can make.

- Fill in the blanks to make
the definition of possible-
amounts work correctly:

(possible-amounts 3)
(3 7 12 11 16 21 15 20 25 30)

(possible-amounts 2)
(2 6 11 10 15 20)
(This includes two pennies, a
penny and a nickel, a penny
and a dime, two nickels, a
nickel and a dime, and two
dimes)

(possible-amounts 1)(1 5 10)

Tree-recursion (2 of 2)

(define *coin-amounts* __________________________)
(define (possible-amounts n)
 (pa-helper *coin-amounts* n))
(define (pa-helper coins n)
 (cond ((<= n 1) ___________________) ;; base case 1
 ((empty? coins) ________________________) ;; base case 2
 (else (se (add-coin-to-every ;; recur case 1
 (first coins)
 (pa-helper coins (- n 1)))
 (pa-helper ;; recur case 2

 ________________________________)))))

;; add coin to each element of sent
(define (add-coin-to-every coin sent)
 (every (lambda (num)
 (+ coin num))
 sent))

Write successive-concatenation
(sc '(a b c d e))
 (a ab abc abcd abcde)
(sc '(the big red barn))
 (the thebig thebigred thebigredbarn)

(define (sc sent)
 (accumulate
 (lambda ??
)
 sent))

make-decreasing
• make-decreasing

- Takes a sentence of numbers
- Returns a sentence of numbers, having removed

elements of the input that were not larger than
all numbers to the right of them.

(make-decreasing '(9 6 7 4 6 2 3 1))
  (9 7 6 3 1)
(make-decreasing '(3))  (3)

Write first as a recursion, then as a HOF

gather
• Consider the recursive procedure gather that takes a

sentence of at least two single-character words (i.e.,
letters such as 'a', 'b', etc.):

;; sent-of-ltrs is a sentence of at least 2 words that are
;; single letters
(define (gather sent-of-ltrs)
 (cond ((empty? sent-of-ltrs) '())
 ((empty? (bf sent-of-ltrs))
 (se (first sent-of-ltrs)))
 ((equal? (first (first sent-of-ltrs))
 (first (bf sent-of-ltrs)))
 (gather (se (word (first sent-of-ltrs)
 (first (bf sent-of-ltrs)))
 (bf (bf sent-of-ltrs)))))
 (else
 (se (first sent-of-ltrs)
 (gather (bf sent-of-ltrs))))))

• Part A (3 points). What will (gather '(a b b b c d d))
return?

• Part B (6 points). Write gather-hof, which behaves
the same as gather but uses no explicit recursion.

