
CS3:
Introduction to Symbolic

Programming

Spring 2006 Nate Titterton
nate@berkeley.edu

Lecture 10:
Tic-tac-toe, tree recursion

Schedule

Lecture: MIDTERM #2
Lab: Start on "Lists"

Apr 10-1413

Lecture: Review
Lab: Miniproject #3

Apr 3-712

(Spring Break)
Mar 27-3111

More HOF, Tic-Tac-Toe, Tree Recursion
Reading: SS 10, 15; "Change Making" case
study

Mar 20-2410

Introduction to Higher Order Procedures
Reading: SS 7-9; "DbD" part III

Mar 13-179

Announcements

• Mid-semester survey FOR REAL this week
- You need to do this

• Reading this week:
- Simply Scheme Chapters 10 (Tue),15 (Thur)
- Change Making case study (Thur)

Tic Tac Toe

 X | |
---+---+---
 O | O | X
---+---+---
 | |

 "X _ _"

 "O O X"

 "_ _ _"

"X _ _ O O X _ _ _"

The board

 X | |
---+---+---
 O | O | X
---+---+---
 | |

"X _ _ O O X _ _ _"

Triples (another representation of a board)

()x23 oox 789 xo7 2o8 3x9 xo9 3o7

procedures and

 lambda

In Scheme, procedures are first-class objects

• You can assign them a name
• You can pass them as arguments to

procedures
• You can return them as the result of

procedures
• You can include them in data structures

1. Well, you don't know how to do all of these yet.

3. What else in scheme is a first-class object?

The "hard" one is #3: returning procedures

;; this returns a procedure
(define (make-add-to number)
 (lambda (x) (+ number x)))

;; this also returns a procedure
(define add-to-5 (make-add-to 5))

;; hey, where is the 5 kept!?
(add-to-5 8)  13

((make-add-to 3) 20)  23

the lambda form
• "lambda" is a special form that returns a

function:

(lambda (arg1 arg2 …)
statements
)

(lambda (x) (* x x))

 ➩ ➩ ➩ ➩ ➩
 a procedure that takes one argument and multiplies it by itself

Using lambda with define

• These are the same:

(define (square x)
 (* x x))

(define square
 (lambda (x)
 (* x x)))

(lambda (sent)
 (if (empty? sent)
 '()
 (se (square (first sent))
 (???? (bf sent)))))

Can a lambda-defined function be recursive?

When do you NEED lambda?
1. When you need the context (inside a two-

parameter procedure)

(add-suffix '-is-great '(nate sam mary))
  (nate-is-great sam-is-great
 mary-is-great)

3. When you need to make a function on the
fly

Review

Higher order
procedures

Higher order function (HOFs)
• A HOF is a procedure that takes a procedure

as an argument.

• There are three main ones that work with
words and sentences:

- every – do something to each element
- keep – return only certain elements
- accumulate – combine the elements

A definition of every
(define (my-every proc ws)
 (if (empty? ws)
 '()
 (se (proc (first ws))
 (my-every (bf ws))
)))

Every does a lot of work for you:
• Checking the conditional
• Returning the proper base case
• Combing the various recursive steps
• Invoking itself recursively on a smaller problem

Which HOFs would you use to write these?

1) capitalize-proper-names
(c-p-n '(mr. smith goes to washington))  (mr. Smith goes to Washington)

3) count-if
(count-if odd? '(1 2 3 4 5))  3

5) longest-word
(longest-word '(I had fun on spring break))  spring

7) count-vowels-in-each
(c-e-l '(I have forgotten everything))  (1 2 3 3)

9) squares-greater-than-100
(s-g-t-100 '(2 9 13 16 9 45)  (169 256 2025)

11) root of the sum-of-squares
(sos '(1 2 3 4 5 6 7)  30

13) successive-concatenation
(sc '(a b c d e)  (a ab abc abcd abcde)

Write successive-concatenation
(sc '(a b c d e))
 (a ab abc abcd abcde)
(sc '(the big red barn))
 (the thebig thebigred thebigredbarn)

(define (sc sent)
 (accumulate
 (lambda ??
)
 sent))

Tree recursion

Advanced recursion

........................

...151010515

... 146414

... 13313

... 1212

... 111

... 10

...543210

r
o
w
s

(R)

 columns (C)

Pascal’s
Triangle

• How many ways can you choose C things from R choices?
• Coefficients of the (x+y)^R: look in row R
• etc.

(define (pascal C R)
 (cond
 ((= C 0) 1) ;base case
 ((= C R) 1) ;base case
 (else ;tree recurse
 (+ (pascal C (- R 1))
 (pascal (- C 1) (- R 1))
)))

> (pascal 2 5)

(+
(pascal 2 5)

(pascal 2 4)

(pascal 1 4)

(+

(+

(pascal 2 3)

(pascal 1 3)

(pascal 1 3)

(pascal 0 3)

(+ (pascal 2 2)
(pascal 1 2)

(pascal 1 2)
(pascal 0 2)

 1

(pascal 1 2)
(pascal 0 2)  1

 1

(+ (pascal 1 1)
(pascal 0 1)  1

 1

(+ (pascal 1 1)  1
(pascal 0 1)  1

 1
(+ (pascal 1 1)  1

(pascal 0 1)  1

