
CS3:
Introduction to Symbolic

Programming

Spring 2006 Nate Titterton
nate@berkeley.edu

Lecture 9:
Higher Order Procedures

Schedule

Lecture: MIDTERM #2
Lab: Start on "Lists"

Apr 10-1413

Lecture: Review
Lab: Miniproject #3

Apr 3-712

(Spring Break)
Mar 27-3111

More HOF, Tic-Tac-Toe, Tree Recursion
Reading: SS 10, 15; "Change Making" case
study

Mar 20-2410

Introduction to Higher Order Procedures
Reading: SS 7-9; "DbD" part III

Mar 13-179

Lecture: Finishing recursion
Lab: Miniproject #2: Number names

Mar 6-108

Announcements

• Mid-semester survey this week (Thurs/Fri)
- You need to do this

• Reading this week:
- Simply Scheme Chapters 7-9
- Difference between dates, part III

What is a
procedure?

(or, a function).

Treating functions as things
• “define” associates a name with a value

- The usual form associates a name with a object
that is a function

 (define (square x) (* x x))
 (define (pi) 3.1415926535)

- You can define other objects, though:
 (define *pi* 3.1415926535)
 (define *month-names*
 ‘(january february march april may
 june july august september
 october november december))

"Global variables"
• Functions are "global", in that they can be

used anywhere:
(define (pi) 3.1415926535)
(circle-area (radius)

(* (pi) radius radius))

• A "global" variable, similarly, can be used
anywhere:

(define *pi* 3.1415926535)
(circle-area (radius)

(* *pi* radius radius))

Consider two forms of “month-name”:

 (define (month-name1 date)
 (first date))

 (define month-name2 first)

Are these the same?

Why have procedures as objects?

Other programming languages
don’t (often)

Procedures can be taken as arguments…

(define (math-function? func)
 (or (equal? func +)
 (equal? func -)
 (equal? func *)
 (equal? func /)))

…and procedures can be returned from procedures

(define (choose-func name)
 (cond ((equal? name ‘plus) +)
 ((equal? name ‘minus) -)
 ((equal? name ‘divide) /)
 (else ‘sorry)))

(define (make-add-to number)
 (lambda (x) (+ number x)))

(define add-to-5 (make-add-to 5))

Higher order function (HOFs)

• A HOF is a function that takes a function as
an argument.

(define (do-math f arg1 arg2)
 (if (and (equal? arg2 0)
 (equal? f /))
 '(uh oh – divide by zero)
 (f arg1 arg2)))

The three we will focus on

• There are three main ones that work with
words and sentences:

-every – do something to each element

-keep – return only certain elements

-accumulate – combine the elements

• Most recursive functions that operate
on a sentence fall into:
- Mapping: square-all
- Counting: count-vowels, count-evens
- Finding: member, first-even
- Filtering: keep-evens
- Testing: all-even?
- Combining: sum-evens

• Most recursive functions that operate on a
sentence fall into:
- Mapping: square-all --------EVERY
- Counting: count-vowels, count-evens
- Finding: member, first-even
- Filtering: keep-evens --------KEEP
- Testing: all-even?
- Combining: sum-evens --------ACCUMULATE

Patterns for simple recursions

(define (square-all sent)
 (if (empty? sent)
 '()
 (se (square (first sent))
 (square-all (bf sent))
))

(square-all '(1 2 3 4 5))

(every square '(1 2 3 4 5))

Using every…

Write "my-every"

(my-every factorial '(1 2 3 4 5))
 (1 2 6 24 120)

Write "my-keep"

(my-keep odd? '(1 2 3 4 5))
 (1 3 5)

lambda
• "lambda" is a special form that returns a

function:

(lambda (param1 param2 …)
statement1
statement2
)

(lambda (x) (* x x))  [a function]
(every (lambda (x) (* x x)) '(1 2 3 4))
  (1 4 9 16)

Using lambda with define

• Is there a difference between:
(define (square x)
 (* x x))

(define square
 (lambda (x)
 (* x x)))

How about between…
(define (special? wd)
 (member? wd (member wd '(a b c x y z))))

(define (big-proc ...)
 ... lots of code ...
 (keep special? a-sentence)
 ... more code ...)

(define (big-proc ...)
 ... lots of code ...
 (keep (lambda (wd)
 (member wd '(a b c x y z)))
 a-sentence)
 ... more code ...)

