
CS3:
Introduction to Symbolic

Programming

Spring 2006 Nate Titterton
nate@berkeley.edu

Lecture 6:
Finishing up basic recursion

Schedule

(Spring Break)Mar 27-3111

More HOFMar 20-2410

Introduction to Higher Order ProceduresMar 13-179

Lecture: Finishing recursion
Lab: Miniproject #2: Number names

Mar 6-108

Lecture: Midterm 1
Lab: Recursion III

Feb 27-Mar 37

Midterm 1

• You did quite well
(IMO)

• If you need a re-
grade, talk to your
TA first, and then
see the TA that
graded that
question

• Solutions will be
available soon on
the portal (check
announcements). m1_scaled

28.0
26.0

24.0
22.0

20.0
18.0

16.0
14.0

12.0
10.0

8.0
6.0

14

12

10

8

6

4

2

0

Std. Dev = 5.12
Mean = 20.3

N = 67.00

Question 1: fill in the blanks

M1_1

8.07.06.05.04.03.02.01.0

20

10

0

Std. Dev = 1.61
Mean = 5.0

N = 67.00

Q2: Roman numerals, and recursion

• You did quite well
on the recursion
question
- (The TAs and I were

worried about this
one)

• Take home point
(which you've got):
A recursive
solution will have a
series of
conditional cases,
some recursive,
some non-
recursive

M1_2

16.014.012.010.08.06.04.02.0

30

20

10

0

Std. Dev = 3.00
Mean = 13.2

N = 67.00

Q3: between?, and test cases

• Writing test cases
is an "art",
especially when
there are no clear
cut 'cond' clauses

- Test ALL possible
outputs

- Test all conditions
that lead to a
particular decision

M1_3

10.09.08.07.06.05.04.03.02.0

20

10

0

Std. Dev = 2.19
Mean = 6.9

N = 67.00

M1_3C

4.03.02.01.00.0

40

30

20

10

0

Std. Dev = .86
Mean = 2.6

N = 67.00

Q4: validating a scheme expression

• This wasn't a great
question in how it
was "asked"

M1_4

14.012.010.08.06.04.02.00.0

20

10

0

Std. Dev = 3.32
Mean = 7.6

N = 67.00

Q5: sub-sentence using recursion

• Many of you ran
out of time

• Some nice
solutions here (that
I hadn't thought of)

M1_5

12.010.08.06.04.02.00.0

20

10

0

Std. Dev = 4.20
Mean = 6.8

N = 67.00

A solution for sub-sentence

(define (sub-sentence start len sent)
 (cond ((empty? sent)
 '())

 ((> start 1)
 (sub-sentence (- start 1) len (bf sent))
 ((> len 0)
 (se (first sent)
 (sub-sentence start (- len 1)(bf sent))))
 (else
 '())
))

Number Spelling Miniproject

• Read Simply Scheme, page 233, which has
hints

• Another hint (principle): don't force
"everything" into the recursion.
- Special/border cases may be easier to handle

before you send yourself into a recursion

"Tail" recursions
• Accumulating recursions are sometimes

called "tail" recursions (by TAs, me, etc).
- But, not all recursions that keep track of a

number are "tail" recursions.

• A tail recursion has no combiner, so it can
end as soon as a base case is reached
- Compilers can do this efficiently

• An embedded recursion needs to combine
up all the recursive steps to form the
answer
- The poor compiler has to remember everything

Tail or embedded? (1/3)

(define (length sent)
 (if (empty? sent)
 0
 (+ 1 (length (bf sent)))))

Embedded!

(length '(a b c d)) 
 (+ 1 (length '(b c d)))
 (+ 1 (+ 1 (length '(c d))))
 (+ 1 (+ 1 (+ 1 (length '(d)))))
 (+ 1 (+ 1 (+ 1 (+ 1 (length '())))))
 (+ 1 (+ 1 (+ 1 (+ 1 0))))
 (+ 1 (+ 1 (+ 1 1)))
 (+ 1 (+ 1 2))
 (+ 1 3)
 4

Tail or embedded? (2/3)

(define (sent-max sent)
 (if (empty? sent)
 '()
 (sent-max-helper (bf sent) (first sent))))

(define (sent-max-helper sent max-so-far)
 (if (empty? sent)
 max-so-far
 (sent-max-helper (bf sent)
 (if (> max-so-far (first sent))
 max-so-far
 (first sent)))))

Tail or embedded? (3/3)

(define (find-evens sent)
 (cond ((empty? sent) ;base case
 '())
 ((odd? (first sent)) ;rec case 1
 (find-evens (bf sent)))
 (else ;rec case 2: even
 (se (first sent)
 (find-evens (bf sent))))
))

> (find-evens '(2 3 4 5 6))

 (se 2 (se 4 (se 6 ())
 (2 4 6)

(se 2

(se 4
(se 6

()

sent = (2 3 4 5 6)

sent = (3 4 5 6)

sent = (4 5 6)

sent = (5 6)

sent = (6)

sent = ()

(define (sub-sentence start len sent)
 (cond ((empty? sent)
 '())

 ((> start 1)
 (sub-sentence (- start 1) len (bf sent)))
 ((> len 0)
 (se (first sent)
 (sub-sentence start (- len 1)(bf sent))))
 (else
 '())
))

(define (sub-sentence start len sent)
 (cond ((empty? sent)
 '())

 ((> start 1)
 (sub-sentence (- start 1) len (bf sent)))
 ((> len (count sent))

 (sub-sentence start (- len 1)(bl sent))))
 (else
 sent)
))

sub-sentence

Advanced recursions (1/3)

"when it does more than one thing at a time"

• Ones that traverse multiple sentences
- E.g., mad-libs takes a sentence of replacement

words [e.g., ‘(fat Henry three)] and a sentence to
mutate [e.g.,
 ‘(I saw a * horse named * with * legs)]

Advanced recursions (2/3)
• Recursions that have an inner and an outer

recursion

(no-vowels '(I like to type))  ("" lk t typ)

(l33t '(I like to type))  (i 1i/<3 +0 +yP3)

(strip-most-popular-letter '(cs3 is the best class)) 
(c3 i the bet cla)

(occurs-in? 'abc 'abxcde)  #f

Advanced recursions (3/3)

• Tree recursion: multiple recursive calls in a
single recursive step

• There are many, many others

Tree recursion: fibonacci
• The fibonacci sequence:

1 1 2 3 5 8 13 21 34 55

(define (fib n)
 (if (<= n 2)
 1 ;; base case
 (+ (fib (- n 1)) ;; recursive case
 (fib (- n 2)))))

pair-all
• Write pair-all, which takes a sentence of

prefixes and a sentence of suffixes and
returns a sentence pairing all prefixes to all
suffixes.
- (pair-all ‘(a b c) ‘(1 2 3)) 

(a1 b1 c1 a2 b2 c2 a3 b3 c3)

- (pair-all ‘(spr s k) ‘(ite at ing ong)) 
(sprite sprat spring sprong site sat sing
song kite kat king kong)

binary

• Write binary, a procedure to generate the
possible binary numbers given n bits.

(binary 1)(0 1)
(binary 2)(00 01 10 11)
(binary 3)(000 001 010 011 100 101 110 111)

