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Schedule

(Spring Break)Mar 27-3111

More HOFMar 20-2410

Introduction to Higher Order ProceduresMar 13-179

Lecture: Finishing recursion
Lab: Miniproject #2: Number names

Mar 6-108

Lecture: Midterm 1
Lab: Recursion III

Feb 27-Mar 37



Midterm 1

• You did quite well 
(IMO)

• If you need a re-
grade, talk to your 
TA first, and then 
see the TA that 
graded that 
question

• Solutions will be 
available soon on 
the portal (check 
announcements). m1_scaled
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Question 1: fill in the blanks
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Q2: Roman numerals, and recursion

• You did quite well 
on the recursion 
question 
- (The TAs and I were 

worried about this 
one)

• Take home point 
(which you've got): 
A recursive 
solution will have a 
series of 
conditional cases, 
some recursive, 
some non-
recursive
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Q3: between?, and test cases

• Writing test cases 
is an "art", 
especially when 
there are no clear 
cut 'cond' clauses

- Test ALL possible 
outputs

- Test all conditions 
that lead to a 
particular decision
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Q4: validating a scheme expression

• This wasn't a great 
question in how it 
was "asked"
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Q5: sub-sentence using recursion

• Many of you ran 
out of time

• Some nice 
solutions here (that 
I hadn't thought of)
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A solution for sub-sentence

(define (sub-sentence start len sent)
  (cond ((empty? sent) 
        '())

        ((> start 1)
         (sub-sentence (- start 1) len (bf sent))
        ((> len 0)
         (se (first sent)
             (sub-sentence start (- len 1)(bf sent))))
        (else 
         '())
        ))



Number Spelling Miniproject

• Read Simply Scheme, page 233, which has 
hints

• Another hint (principle): don't force 
"everything" into the recursion.
- Special/border cases may be easier to handle 

before you send yourself into a recursion



"Tail" recursions
• Accumulating recursions are sometimes 

called "tail" recursions (by TAs, me, etc).
- But, not all recursions that keep track of a 

number are "tail" recursions.

• A tail recursion has no combiner, so it can 
end as soon as a base case is reached
- Compilers can do this efficiently

• An embedded recursion needs to combine 
up all the recursive steps to form the 
answer
- The poor compiler has to remember everything



Tail or embedded? (1/3)

(define (length sent)
   (if (empty? sent)
      0
      (+ 1 (length (bf sent)))))



Embedded!

(length '(a b c d)) 
  (+ 1 (length '(b c d)))
  (+ 1 (+ 1 (length '(c d))))
  (+ 1 (+ 1 (+ 1 (length '(d)))))
  (+ 1 (+ 1 (+ 1 (+ 1 (length '())))))
  (+ 1 (+ 1 (+ 1 (+ 1 0))))
  (+ 1 (+ 1 (+ 1 1)))
  (+ 1 (+ 1 2))
  (+ 1 3)
  4



Tail or embedded? (2/3)

(define (sent-max sent)
  (if (empty? sent)
    '()
    (sent-max-helper (bf sent) (first sent))))

(define (sent-max-helper sent max-so-far)
  (if (empty? sent)
    max-so-far
    (sent-max-helper (bf sent) 
                     (if (> max-so-far (first sent))
                         max-so-far
                         (first sent)))))



Tail or embedded? (3/3)

(define (find-evens sent)
  (cond ((empty? sent)       ;base case
         '()           )
        ((odd? (first sent)) ;rec case 1
         (find-evens (bf sent)) )
        (else                ;rec case 2: even
         (se (first sent)
             (find-evens (bf sent))) )
        )) 



> (find-evens '(2 3 4 5 6))

 (se 2 (se 4 (se 6 ())  
 (2 4 6)

(se 2 

(se 4 
(se 6 

() 

sent = ( 2 3 4 5 6 )

sent = ( 3 4 5 6 )

sent = ( 4 5 6 )

sent = ( 5 6 )

sent = ( 6 )

sent = ( )



(define (sub-sentence start len sent)
  (cond ((empty? sent) 
        '())

        ((> start 1)
         (sub-sentence (- start 1) len (bf sent)))
        ((> len 0)
         (se (first sent)
             (sub-sentence start (- len 1)(bf sent))))
        (else 
         '())
        ))

(define (sub-sentence start len sent)
  (cond ((empty? sent) 
        '())

        ((> start 1)
         (sub-sentence (- start 1) len (bf sent)))
        ((> len (count sent))
         
             (sub-sentence start (- len 1)(bl sent))))
        (else 
         sent)
        ))

sub-sentence



Advanced recursions (1/3)

"when it does more than one thing at a time"

• Ones that traverse multiple sentences
- E.g., mad-libs takes a sentence of replacement 

words [e.g., ‘(fat Henry three)] and a sentence to 
mutate [e.g., 
   ‘(I saw a * horse named * with * legs)]



Advanced recursions (2/3)
• Recursions that have an inner and an outer 

recursion

(no-vowels '(I like to type))  ("" lk t typ)

(l33t '(I like to type))  (i 1i/<3 +0 +yP3)

(strip-most-popular-letter '(cs3 is the best class))  
(c3 i the bet cla) 

(occurs-in? 'abc 'abxcde)  #f



Advanced recursions (3/3)

• Tree recursion: multiple recursive calls in a 
single recursive step

• There are many, many others



Tree recursion: fibonacci
• The fibonacci sequence: 

1 1   2   3   5   8   13   21   34   55

(define (fib n)
   (if (<= n 2)
      1                  ;; base case
      (+ (fib (- n 1))   ;; recursive case
         (fib (- n 2)))))



pair-all
• Write pair-all, which takes a sentence of 

prefixes and a sentence of suffixes and 
returns a sentence pairing all prefixes to all 
suffixes.
- (pair-all ‘(a b c) ‘(1 2 3))  

(a1 b1 c1 a2 b2 c2 a3 b3 c3)

- (pair-all ‘(spr s k) ‘(ite at ing ong)) 
(sprite sprat spring sprong site sat sing
song kite kat king kong) 



binary

• Write binary, a procedure to generate the 
possible binary numbers given n bits. 

(binary 1)(0 1)
(binary 2)(00 01 10 11)
(binary 3)(000 001 010 011 100 101 110 111) 


