
CS3:
Introduction to Symbolic

Programming

Fall 2006 Nate Titterton
nate@berkeley.edu

Lecture 14:
Lists

Schedule

Final Exam, 5-8pm
F295 Haas

Thursday, May
17

Lecture: Exam review
no more labs!

May 716

Lecture: CS at Berkeley (guest lecture)
Lab: Finish projects (due end of week)

Apr 30-May 415

Lecture: Non-functional programming, lists,
 project review
Lab: Non-functional programming
 Work on projects

April 23-2714

Lecture: CS3 Projects, Lists
Lab: Begin work on CS3 Big Project
Reading: Simply Scheme, chapter 20

April 16-2013

Midterm #2

Any questions?

4) tail-recursive roman-sum
5) price-is-right
6) last-letter
7) chips, drinks, and gum -- snack3

Project Check-offs

• There are 3 checkoffs
You need to do them on time in order to get
credit for the project

3. Tell your TA which project you will do and who
you will do it with

4. Show your TA that you have accomplished
something. S/he will comment.

5. Show that you have most of the work done:
your TA will run your code.

Lists

Lists: review of new procedures
• Constructors

-append
-list
-cons

• Selectors
-car
-cdr

• HOF
-map
-filter
-reduce
-apply

What goes in a list?
• Answer: anything!

• So,

 (word? x)

 (not (list? x))

are not the same thing!

A few other important topics re: lists

2. map can take multiple arguments

4. apply

6. Association lists

8. Generalized lists

map can take multiple list arguments
(map + '(1 2 3) '(100 200 300))
(101 202 303)

The argument lists have to be the same length

(define (palindrome? lst)
 (all-true?
 (map equal? lst (reverse lst))))

(palindrome? '(a m a n a p l a n a c a n a l p a n a m a))
  #t

 Write all-true?, without using cond/if.

apply (not the same as accumulate!)
• apply takes a function and a list, and calls

the function with the elements of the list as
its arguments:

(apply + '(1 2 3))

(apply cons '(joe (bob)))

(apply day-span
 '((january 1) (december 31)))

Association lists
• Used to associate key-value pairs

((i 1) (v 5) (x 10) (l 50) (c 100) (d 500) (m 1000))
•assoc looks up a key and returns a pair

(assoc 'c '((i 1) (v 5) (x 10) …))
 (c 100)

;; Write sale-price, which takes a list of items
;; and returns a total price
(define *price-list* '((bread 2.89) (milk 2.33)
 (cheese 5.21) (chocolate .50)
 (beer 6.99) (tofu 1.67) (pasta .69)))

(sale-price '(bread tofu))

Generalized lists
• Elements of a list can be anything, including

any list

• Lab materials discuss
-flatten (3 ways)
-completely-reverse
- processing a tree-structured directory

How about this flatten?

(define (flatten thing)
 (if (list? thing)
 (reduce _______ (map flatten thing))
 (______ thing)))

Write deep-member?

(deep-member? 'b
 '((a b) (c d) (e f) (g h i)))
 #t

(deep-member? 'x
 '((a b) (c d) (e f) (g h i)))
 #f

(deep-member? '(c d)
 '((a b) (c d) (e f) (g h i)))
 #t

CS3:
Introduction to Symbolic

Programming

Fall 2006 Nate Titterton
nate@berkeley.edu

Lecture 14:
Lists

2

Spring 2006 CS3: 2

Schedule

Final Exam, 5-8pm
F295 Haas

Thursday, May
17

Lecture: Exam review
no more labs!

May 716

Lecture: CS at Berkeley (guest lecture)
Lab: Finish projects (due end of week)

Apr 30-May 415

Lecture: Non-functional programming, lists,
 project review
Lab: Non-functional programming
 Work on projects

April 23-2714

Lecture: CS3 Projects, Lists
Lab: Begin work on CS3 Big Project
Reading: Simply Scheme, chapter 20

April 16-2013

Spring 2006 CS3: 3

Midterm #2

Any questions?

4) tail-recursive roman-sum
5) price-is-right
6) last-letter
7) chips, drinks, and gum -- snack3

Spring 2006 CS3: 4

Project Check-offs

• There are 3 checkoffs
You need to do them on time in order to get
credit for the project

3. Tell your TA which project you will do and who
you will do it with

4. Show your TA that you have accomplished
something. S/he will comment.

5. Show that you have most of the work done:
your TA will run your code.

Lists

Spring 2006 CS3: 6

Lists: review of new procedures
• Constructors

-append
-list
-cons

• Selectors
-car
-cdr

• HOF
-map
-filter
-reduce
-apply

 7

Spring 2006 CS3: 7

What goes in a list?
• Answer: anything!

• So,

 (word? x)

 (not (list? x))

are not the same thing!

See the slide on flatten, and compare the code on the slide to the code on
ucwise: in the slide, we use the proper "(not (list? thing))" rather than "(word?
thing)", which won't be fooled by booleans and procedures (i.e., things that aren't
words but aren't lists either).

Spring 2006 CS3: 8

A few other important topics re: lists

2. map can take multiple arguments

4. apply

6. Association lists

8. Generalized lists

 9

Spring 2006 CS3: 9

map can take multiple list arguments
(map + '(1 2 3) '(100 200 300))
(101 202 303)

The argument lists have to be the same length

(define (palindrome? lst)
 (all-true?
 (map equal? lst (reverse lst))))

(palindrome? '(a m a n a p l a n a c a n a l p a n a m a))
  #t

 Write all-true?, without using cond/if.

(define (all-true? lst)
 (or (null? lst)
 (and (car lst)
 (all-true? (cdr lst)))))

Spring 2006 CS3: 10

apply (not the same as accumulate!)
• apply takes a function and a list, and calls

the function with the elements of the list as
its arguments:

(apply + '(1 2 3))

(apply cons '(joe (bob)))

(apply day-span
 '((january 1) (december 31)))

 11

Spring 2006 CS3: 11

Association lists
• Used to associate key-value pairs

((i 1) (v 5) (x 10) (l 50) (c 100) (d 500) (m 1000))
•assoc looks up a key and returns a pair

(assoc 'c '((i 1) (v 5) (x 10) …))
 (c 100)

;; Write sale-price, which takes a list of items
;; and returns a total price
(define *price-list* '((bread 2.89) (milk 2.33)
 (cheese 5.21) (chocolate .50)
 (beer 6.99) (tofu 1.67) (pasta .69)))

(sale-price '(bread tofu))

(define *price-list* '((bread 2.89) (milk 2.33) (cheese 5.21) (chocolate .50)
 (beer 6.99) (tofu 1.67) (pasta .69)))

(define (sale-price items))
 (* 1.0825 ;; tax, why not…
 (apply +
 (map (lambda (i) (cadr (assoc i *price-list*)))
 items))))

#|
(sale-price '(cheese milk pasta tofu) *price-list*) ;; 10.71675
(sale-price '(beer beer beer beer) *price-list*) ;; 30.2667

|#

Spring 2006 CS3: 12

Generalized lists
• Elements of a list can be anything, including

any list

• Lab materials discuss
-flatten (3 ways)
-completely-reverse
- processing a tree-structured directory

 13

Spring 2006 CS3: 13

How about this flatten?

(define (flatten thing)
 (if (list? thing)
 (reduce _______ (map flatten thing))
 (______ thing)))

;; The way to think about this is to "trust
;; the recursion". "flatten" has to return a flat list, right? So, both
;; cases in the if have to return properly flattened lists.

;; what is (map flatten thing) going to return?
;; well, it has to be something like this:
;; ((a b c) (d e f) (g h i))
;; or, a "list of flat lists". The full reduce has to return, when given
;; this,
;; (a b c d e f g h i)
;; or a properly flat list. With that, you should be able to fill
;; in the first blank.

;; The second blank is also easy, when you realize that the return value
;; must be a flat list. "thing" is a word (or, more properly, not a list).
;; So, turning it into a flat list is easy!

;; Here is the solution
(define (flatten thing)
 (if (list? thing)
 (reduce append (map flatten thing))
 (list thing)))

 14

Spring 2006 CS3: 14

Write deep-member?

(deep-member? 'b
 '((a b) (c d) (e f) (g h i)))
 #t

(deep-member? 'x
 '((a b) (c d) (e f) (g h i)))
 #f

(deep-member? '(c d)
 '((a b) (c d) (e f) (g h i)))
 #t

;; similar to solution for flatten
(define (deep-member? item gl)
 (cond ((null? gl) #f)

((list? (car gl))
 (or (equal? item (car gl))

 (deep-member? item (car gl))
 (deep-member? item (cdr gl))
))
(else ;; first element is a non-list
 (or (equal? item (car gl))
 (deep-member? item (cdr gl)))
)))

;; another way
(define (deep-member? item gl)
 (cond ((null? gl) #f)

((equal? item (car gl)) #t) ; checks with either a list or non-
list as first element

((list? (car gl))
 (or (deep-member? item (car gl))

 (deep-member? item (cdr gl))
))
(else (deep-member? item (cdr gl)))
))

