
CS3:
Introduction to Symbolic

Programming

Fall 2006 Nate Titterton
nate@berkeley.edu

Lecture 13:
Introduction to the big project,

Lists

Schedule

Final Exam, 5-8pm
F295 Haas

Thursday, May
17

Lecture: Exam review
no more labs!

May 716

Lecture: CS at Berkeley (guest lecture)
Lab: Finish projects (due end of week)

Apr 30-May 415

Lecture: Non-functional programming, lists,
 project review
Lab: Non-functional programming
 Work on projects

April 23-2714

Lecture: CS3 Projects, Lists
Lab: Begin work on CS3 Big Project
Reading: Simply Scheme, chapter 20

April 16-2013

Give me suggestions for remain lectures, if you have them…

Midterm #2

• Will be available Wed/Thursday
- (graded Tuesday night).

Any questions?

6) tail-recursive roman-sum
7) price-is-right
8) last-letter
9) chips, drinks, and gum -- snack3

The Big Project

• Two possible projects:
- Connect4
- Blocks World

• You can, and should, work in partnerships
• You will have three weeks to work on this (it

is due on the last lab)
• Worth 15% of your final grade

Project Check-offs

• There are 3 checkoffs
You need to do them on time in order to get
credit for the project

3. Tell your TA which project you will do and who
you will do it with

4. Show your TA that you have accomplished
something. S/he will comment.

5. Show that you have most of the work done:
your TA will run your code.

Due dates on the final project

(May 4, Friday)
Due (at midnight)

(May 1-2)
Checkoff 3

(April 26/27)
Checkoff 2

(April 24/25)

(April 19/20)
Checkoff 1

(April 17/18)
Introduction

Thur/FriTues/Wed

Lets see the
projects in action

What issues matter

• Does it work?
- This is a primary grading standard…

• Programming style
• Data abstractions
• Reading specifications carefully
• Adequate testing

Working in partnerships

• Highly recommended!
- For those of you continuing with CS, you'll be

doing this for many future projects
• Won't be faster, necessarily

- While you are less likely to get stuck, there will
be a lot of communication necessary

• A big benefit will be with testing
• Remember, only one grade is given…

- this grade will be the same, whether the project
is a solo or a partnership

Data structures

• The format of data used in these projects in
a central feature
- A "data structure" (abstract data type) is a

specification of that format. Here, generally,
lists of lists (of lists).

- Accessors and constructor allow for modularity:
letting parts of a program work independently
from other parts.

Functional Programming
• In CS3, we have focused on programming

without side-effects.
- All that can matter with a procedure is what it

returns
- In other languages, you typically:

- Perform several actions in a sequence
- Set the value of a variable – and it stays that way

- All of this is possible in Scheme.
• Both projects involve graphics and/or

printing, which is a side-effect.
- Simply Scheme chapter 20 is nice summary.
- We'll cover this in the next lecture, and in next

Tue/Wed's lab.

Lists

Lists
• Lists are containers, like sentences, where each

element can be anything

- Including, another list

((beatles 4) (beck 1) ((everly brothers) 2) …)

((california 55) (florida 23) ((new york) 45))

(#f #t #t #f #f …)

Sentences(words) vs lists: constructors

sentence
Takes a bunch of words and
sentences and puts "them" in
order in a new sentence.

list
Takes any number of elements
Returns the list with those
elements

append
Takes two lists
Returns a list with the element of
each list put together

cons
Takes an element and a list
Returns a list with the element at
the front, and the list contents
trailing

Sentences(words) vs lists: selectors

butlast
…

last
…

butfirst
Returns a sentence of
everything but the first word
(but, works on lists)

cdr
Returns a list of everything
but the first element of the list

first
Returns the first word
(although, works on non-
words)

car
Returns the first element of
the list

What is the point of cons? (1/2)

•append and list are generally used to
conveniently build lists

•cons is more closely tied to use in recursion,
specifically as the combiner in linear
recursion

(define (square-all seq)
 (if (empty? seq)
 '()
 (se (square (first seq))
 (square-all (bf seq)))))
(s-a '(1 2 3))  (se 1 (se 4 (se 9 '())))

What is the point of cons? (2/2)

(define (square-all seq)
 (if (null? seq)
 '()
 (cons (square (car seq))
 (square-all (cdr seq)))))
(s-a '(1 2 3))  (cons 1 (cons 4 (cons 9 '())))

Sentences(words) vs lists: HOF

…apply
Takes a function and arguments,
and applies that function to its
arguments

accumulate
Returns the value of applying a
function to successive pairs of
the input sentence or word

reduce
Returns the value of applying a
function to successive pairs of the
(single) input list

keep
Returns a sentence or word
where every element satisfies a
predicate

filter
Returns a list where every
element satisfies a predicate.
Takes a single list as input

every
Returns a sentence where a
func is applied to every element
of an input sentence or word.

map
Returns a list where a func is
applied to every element of the
input list.
Can take multiple input lists.

Example: mapping over a list
Here, we map (like every) over a list of

functions:

(map (lambda (proc)
 (proc 4 3))
 '(+ - / * expt))

  (7 4 4/3 12 64)

map can take multiple list arguments
(map + '(1 2 3) '(100 200 300))
(101 202 303)

The argument lists have to be the same length

(define (palindrome? lst)
 (all-true?
 (map equal? lst (reverse lst))))

(palindrome?
 '(a m a n a p l a n a c a n a l p a n a m a))
  #t

apply (not the same as accumulate!)
• apply takes a function and a list, and calls

the function with the elements of the list as
its arguments:

(apply + '(1 2 3))

(apply cons '(joe '(bob)))

(apply day-span
 '((january 1) (december 31)))

