
CS3: 
Introduction to Symbolic 

Programming

Spring 2007       Nate Titterton
nate@berkeley.edu

Lecture 11:
Tree Recursion, beginning lists, 

and Midterm 2



Schedule

Lecture: Exam review
no more labs!

May 716

Lecture: CS at Berkeley (guest lecture)
Lab: Finish projects (due end of week)

Apr 30-May 415

Lecture: Advanced lists, project review 
Lab: Work on projects

April 23-2714

Lecture: CS3 Projects, Lists
Lab: Begin work on CS3 Big Project
        Non-functional programming
Reading: Simply Scheme, chapter 20

April 16-2013

Lecture (5-7 pm): Midterm #2 -- 145 Dwinelle
Lab: Advanced list processing

April 9-1312

Lecture: Midterm review, tree recursion
Lab: Lists, tree-recursion
         Miniproject #3 due Tuesday

April 2-611



Any questions about the miniproject?



Midterm 2



Announcements
• Midterm 2 is coming…

- Next week, 80 minutes (5:10-6:30).
- Room   145 Dwinelle
- Open book, open notes, etc.
- Check for practice exams and solution on the 

course portal and in the reader.

• Midterm 2 review session
- Sunday, Apr. 8, 4-6pm in 430 Soda.



What does midterm #2 cover?

• Advanced recursion (accumulating, multiple 
arguments, etc.).  

• Tree-recursion (from this week)
• All of higher order functions
• Those "big" homeworks (bowling, compress, and 

occurs-in)
• Elections and number-name miniproject
• Reading and programs:

- Change making,  Roman numerals
- Difference between dates #3 (HOF), 
- tic-tac-toe

• SS chapters 14, 15, 7, 8, 9, 10
• Everything before the first Midterm (although, this 

won't be the focus of a question)



Tree recursion

(coming this week)



What will happen?

• What will countem return for n=1, 2, …?

(define (countem n)
   (if (= n 0)
       '()
       (se (countem (- n 1))
           n
           (countem (- n 1)))))



Tree recursion

A recursive technique in which more than 
one recursive call is made within a recursive 
case.



Pascal's triangle

........................ 

...151010515

... 146414

...  13313

...   1212

...    111

...     10

...543210

r
o
w
s

(R)

  columns (C)

Pascal’s
Triangle

• How many ways can you choose C things from R choices?
• Coefficients of the (x+y)^R: look in row R
• etc.



(define (pascal C R)
  (cond 
    ((= C 0) 1)   ;base case
    ((= C R) 1)   ;base case
    (else         ;tree recurse 
     (+ (pascal    C    (- R 1))
        (pascal (- C 1) (- R 1))
     ))) 



> (pascal 2 5)

(+ 
(pascal 2 5) 

(pascal 2 4) 

(pascal 1 4) 

(+ 

(+ 

(pascal 2 3) 

(pascal 1 3) 

(pascal 1 3) 

(pascal 0 3) 

(+ (pascal 2 2) 
(pascal 1 2) 

(pascal 1 2) 
(pascal 0 2) 

 1

(pascal 1 2) 
(pascal 0 2)  1

 1

(+ (pascal 1 1) 
(pascal 0 1)  1

 1

(+ (pascal 1 1)  1
(pascal 0 1)  1

 1
(+ (pascal 1 1)  1

(pascal 0 1)  1



Problems



binary

• Write binary, a procedure to generate the 
possible binary numbers given n bits. 

(binary 1)(0 1)
(binary 2)(00 01 10 11)
(binary 3)(000 001 010 011 100 101 110 111) 



  

 



2 

  

Schedule

Lecture: Exam review
no more labs!

May 716

Lecture: CS at Berkeley (guest lecture)
Lab: Finish projects (due end of week)

Apr 30-May 415

Lecture: Advanced lists, project review 
Lab: Work on projects

April 23-2714

Lecture: CS3 Projects, Lists
Lab: Begin work on CS3 Big Project
        Non-functional programming
Reading: Simply Scheme, chapter 20

April 16-2013

Lecture (5-7 pm): Midterm #2 -- 145 Dwinelle
Lab: Advanced list processing

April 9-1312

Lecture: Midterm review, tree recursion
Lab: Lists, tree-recursion
         Miniproject #3 due Tuesday

April 2-611



  

 

Any questions about the miniproject?

Click to add text



  

 

Midterm 2

Click to add text



  

 

Announcements
• Midterm 2 is coming…

- Next week, 80 minutes (5:10-6:30).
- Room   145 Dwinelle
- Open book, open notes, etc.
- Check for practice exams and solution on the 

course portal and in the reader.

• Midterm 2 review session
- Sunday, Apr. 8, 4-6pm in 430 Soda.



  

 

What does midterm #2 cover?

• Advanced recursion (accumulating, multiple 
arguments, etc.).  

• Tree-recursion (from this week)
• All of higher order functions
• Those "big" homeworks (bowling, compress, and 

occurs-in)
• Elections and number-name miniproject
• Reading and programs:

- Change making,  Roman numerals
- Difference between dates #3 (HOF), 
- tic-tac-toe

• SS chapters 14, 15, 7, 8, 9, 10
• Everything before the first Midterm (although, this 

won't be the focus of a question)



  

 

Tree recursion

(coming this week)



  

 8

What will happen?

• What will countem return for n=1, 2, …?

(define (countem n)
   (if (= n 0)
       '()
       (se (countem (- n 1))
           n
           (countem (- n 1)))))

STk> (countem 1)
(1)
STk> (countem 2)
(1 2 1)
STk> (countem 3)
(1 2 1 3 1 2 1)
STk> (countem 4)
(1 2 1 3 1 2 1 4 1 2 1 3 1 2 1)



  

 

Tree recursion

A recursive technique in which more than 
one recursive call is made within a recursive 
case.



  

 

Pascal's triangle

........................ 

...151010515

... 146414

...  13313

...   1212

...    111

...     10

...543210

r
o
w
s

(R)

  columns (C)

Pascal’s
Triangle

• How many ways can you choose C things from R choices?
• Coefficients of the (x+y)^R: look in row R
• etc.



  

 

(define (pascal C R)
  (cond 
    ((= C 0) 1)   ;base case
    ((= C R) 1)   ;base case
    (else         ;tree recurse 
     (+ (pascal    C    (- R 1))
        (pascal (- C 1) (- R 1))
     ))) 



  

 

> (pascal 2 5)

(+ 
(pascal 2 5) 

(pascal 2 4) 

(pascal 1 4) 

(+ 

(+ 

(pascal 2 3) 

(pascal 1 3) 

(pascal 1 3) 

(pascal 0 3) 

(+ (pascal 2 2) 
(pascal 1 2) 

(pascal 1 2) 
(pascal 0 2) 

 1

(pascal 1 2) 
(pascal 0 2)  1

 1

(+ (pascal 1 1) 
(pascal 0 1)  1

 1

(+ (pascal 1 1)  1
(pascal 0 1)  1

 1
(+ (pascal 1 1)  1

(pascal 0 1)  1



  

 

Problems

Click to add text



14 

  

binary

• Write binary, a procedure to generate the 
possible binary numbers given n bits. 

(binary 1)(0 1)
(binary 2)(00 01 10 11)
(binary 3)(000 001 010 011 100 101 110 111) 

(define (binary n)
  (if (= n 1)
      '(0 1)
      (se (prepend-every 0 (binary (- n 1)))
           (prepend-every 1 (binary (- n 1))))))

(define (prepend-every what sent)
        (if (empty? sent) '()
           (se (word what (first sent))
               (prepend-every what (bf sent)))))


