CS3:
 Introduction to Symbolic Programming

Lecture 11:
Tree Recursion, beginning lists, and Midterm 2

Spring 2007
Nate Titterton
nate@berkeley.edu

Schedule

\(\left.$$
\begin{array}{|l|l|l|}\hline 11 & \text { April 2-6 } & \begin{array}{l}\text { Lecture: Midterm review, tree recursion } \\
\text { Lab: Lists, tree-recursion } \\
\text { Miniproject \#3 due Tuesday }\end{array} \\
\hline 12 & \text { April 9-13 } & \begin{array}{l}\text { Lecture (5-7 pm): Midterm \#2 -- } 145 \text { Dwinelle } \\
\text { Lab: Advanced list processing }\end{array} \\
\hline 13 & \text { April 16-20 } & \begin{array}{l}\text { Lecture: CS3 Projects, Lists } \\
\text { Lab: Begin work on CS3 Big Project } \\
\text { Non-functional programming }\end{array}
$$

Reading: Simply Seheme, chapter 20\end{array}\right]\)| Lecture: Advanced lists, project review |
| :--- |
| Lab: Work on projects |$|$| April 23-27 |
| :--- |

Any questions about the miniproject?

Midterm 2

Announcements

- Midterm 2 is coming...
- Next week, 80 minutes (5:10-6:30).
- Room 145 Dwinelle
- Open book, open notes, etc.
- Check for practice exams and solution on the course portal and in the reader.
- Midterm 2 review session
- Sunday, Apr. 8, 4-6pm in 430 Soda.

What does midterm \#2 cover?

- Advanced recursion (accumulating, multiple arguments, etc.).
- Tree-recursion (from this week)
- All of higher order functions
- Those "big" homeworks (bowling, compress, and occurs-in)
- Elections and number-name miniproject
- Reading and programs:
- Change making, Roman numerals
- Difference between dates \#3 (HOF),
- tic-tac-toe
- SS chapters 14, 15, 7, 8, 9, 10
- Everything before the first Midterm (although, this won't be the focus of a question)

Tree recursion

(coming this week)

What will happen?

- What will countem return for $n=1,2, \ldots$?
(define (countem n)
(if (= n 0)
'()
(se (countem (- n 1))
n
(countem (- n 1)))))

Tree recursion

A recursive technique in which more than one recursive call is made within a recursive case.

Pascal's triangle

	columns (C)							
		0	1	2	3	4	5	\ldots
	0	1						\ldots
	1	1	1					\ldots
\bigcirc	2	1	2	1				\ldots
S	3	1	3	3	1			\ldots
(R)	4	1	4	6	4	1		\ldots
	5	1	5	10	10	5	1	\ldots
		\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	..

Pascal's Triangle

- How many ways can you choose C things from R choices?
- Coefficients of the $(x+y)^{\wedge} R$: look in row R
- etc.
(define (pascal C R)
(cond

$\left(\begin{array}{lll}C & 0 & 1\end{array}\right)$;bas	case
($=$ C R) 1)	;ba	as
else	; tre	recurse
+ (pascal	C	(- R 1)
cal	C	(-R

)))

$>$ (pascal 2 5)

(pascal 2 5)
(+ (pascal 24)
(+
$\underset{\left(+\begin{array}{lll}\text { (pascal } 2 & 2) & \rightarrow 1\end{array}\right]}{\left(\begin{array}{ll}\text { pascal } & 2\end{array}\right.}$
(pascal 1 2) (+
(pascal 1 3)
(pascal 12)
(pascal 02 2) $\rightarrow 1$
(pascal 1 4)

(pascal 0 3)
$\rightarrow \quad 1$

Problems

binary

- Write binary, a procedure to generate the possible binary numbers given n bits.

```
(binary 1) >(0 1)
(binary 2) }->(00\quad01 10 11
(binary 3) }->(000001 010 011 100 101 110 111
```


Schedule

11	April 2-6	Lecture: Midterm review, tree recursion Lab: Lists, tree-recursion Miniproject \#3 due Tuesday
12	April 9-13	Lecture (5-7 pm): Midterm \#2 -- 145 Dwinelle Lab: Advanced list processing
13	April 16-20	Lecture: CS3 Projects, Lists Lab: Begin work on CS3 Big Project Non-functional programming
14	April 23-27	Reding: Simply Seheme, chapter 20
Lecture: Advanced lists, project review Lab: Work on projects		
15	Apr 30-May 4	Lecture: CS at Berkeley (guest lecture) Lab: Finish projects (due end of week)
16	May 7	Lecture: Exam review no more labs!

Any questions about the miniproject?

Click to add text

Midterm 2

Click to add text

Announcements

- Midterm 2 is coming...
- Next week, 80 minutes (5:10-6:30).
- Room 145 Dwinelle
- Open book, open notes, etc.
- Check for practice exams and solution on the course portal and in the reader.
- Midterm 2 review session
- Sunday, Apr. 8, 4-6pm in 430 Soda.

What does midterm \#2 cover?

- Advanced recursion (accumulating, multiple arguments, etc.).
- Tree-recursion (from this week)
- All of higher order functions
- Those "big" homeworks (bowling, compress, and occurs-in)
- Elections and number-name miniproject
- Reading and programs:
- Change making, Roman numerals
- Difference between dates \#3 (HOF),
- tic-tac-toe
- SS chapters 14, 15, 7, 8, 9, 10
- Everything before the first Midterm (although, this won't be the focus of a question)

Tree recursion

(coming this week)

What will happen?

- What will countem return for $n=1,2, \ldots$?

```
(define (countem n)
    (if (= n 0)
    '()
    (se (countem (- n 1))
                n
                    (countem (- n 1)))))
```

STk> (countem 1)
(1)

STk> (countem 2)
(12 1)
STk> (countem 3)
(1213121)

STk> (countem 4)
(121312141213121)

Tree recursion

A recursive technique in which more than one recursive call is made within a recursive case.

Pascal's triangle

	columns (C)							
		0	1	2	3	4	5	...
	0	1						\ldots
r	1	1	1					\cdots
\bigcirc	2	1	2	1				\ldots
s	3	1	3	3	1			\cdots
(R)	4	1	4	6	4	1		\ldots
	5	1	5	10	10	5	1	\cdots
	\ldots							

Pascal's - How many ways can you choose C things from R choices?
Triangle - Coefficients of the $(x+y)^{\wedge} R$: look in row R

- etc.
(define (pascal C R) (cond
(($=$ C 0) 1) ;base case ((= C R) 1) ;base case (else ;tree recurse (+ (pascal C (- R 1)) (pascal (- C 1) (- R 1)))))
$>$ (pascal 2 5)
(pascal 2 5)

(pascal 24)	

(pascal 1 4)

$\rightarrow 1$

Problems

Click to add text

binary

- Write binary, a procedure to generate the possible binary numbers given n bits.

```
(binary 1) }->(0\mathrm{ 1)
(binary 2) }->(00 01 10 11
(binary 3) }->(000001010011100101 110 111
```

(define (binary n)
(if (= n 1) '(01)
(se (prepend-every 0 (binary (-n 1)))
(prepend-every $1($ binary $(-\mathrm{n} 1))))$))
(define (prepend-every what sent)
(if (empty? sent) '()
(se (word what (first sent))
(prepend-every what (bf sent)))))

