
CS3:
Introduction to Symbolic

Programming

Spring 2007 Nate Titterton
nate@berkeley.edu

Lecture 10:
Finishing HOF

Schedule

Lecture: CS3 Projects
Lab: Begin work on CS3 Big Project

April 16-2013

Lecture (5-7 pm): Midterm #2
 145 Dwinelle
Lab: Advanced list processing

April 9-1312

Lecture: Midterm review, tree recursion
Lab: Lists, tree-recursion
 Miniproject #3 due Tuesday

April 211

Mar 26-30 Spring Break

Lecture: Higher-order function review
Lab: More Higher order functions
 Miniproject #3 assigned

Mar 19-2310

Lab materials
• Last week:

- day-span using higher order procedures
- tic-tac-toe

• This week:
- A half day working further on tic-tac-toe (T/W)
- Some "Challenging review problems", with

solutions (T/W)
- Work on the miniproject (all week)

every containing every
• You can mimic 2-stage recursion, applying a

function to each letter of each word.

• You can get combinatoric effects:

(define (pair-all sent)
(every (lambda (one)

 (every (lambda (two)
 (word one two))
 sent))
 sent))

(pair-all '(a b c))  ???

every containing every containing…
(make-kw '(s t) '(a o)) 
 (sas sat sos sot tas tat tos tot)
(make-kw '(l n k t s) '(a e i o u))  225 words!

(define (make-kw consonants vowels)
 (every (lambda (c)
 (every (lambda (v)

 vowels))
 consonants))

accumulate can return a sentence…

- the first time accumulate is run, it reads the last
two words of the input sentence, and returns a
sentence

- in later calls, it uses the return value of its
procedure (which is a sentence) as its 2nd
argument, and the next work as its 1st.

Write pair-conseq:

(pair-conseq '(a b c d))  (ab bc cd)

lambda

the lambda form
• "lambda" is a special form that returns a

function:

(lambda (arg1 arg2 …)
statements
)

(lambda (x) (* x x))

 ➩ ➩ ➩ ➩ ➩
 a procedure that takes one argument and multiplies it by itself

Use lambda anywhere you need a function

(define square
 (lambda (x) (* x x)))

(every (lambda (x) (* x x))
 '(1 2 3))
  (1 4 9)

((lambda (x) (* x x)) 3)
  9

make-bookends (a small problem)

• Write make-bookends, which is used this
way:

((make-bookends 'o) 'hi)  ohio

((make-bookends 'to) 'ron)  toronto

(define tom-proc (make-bookends 'tom))
(tom-proc "")  tomtom

You need lambda when…
…you need a procedure to make reference to

more values than you can pass it.

For instance, when a procedure for use in an
every needs two parameters

(prepend-every 'sir- '(sam mary loin))
  (sir-sam sir-mary sir-loin)

Write prepend-every

Write appearances

Problems

Write successive-concatenation
(sc '(a b c d e))
 (a ab abc abcd abcde)
(sc '(the big red barn))
 (the thebig thebigred thebigredbarn)

(define (sc sent)
 (accumulate
 (lambda ??
)
 sent))

make-decreasing
• make-decreasing

- Takes a sentence of numbers
- Returns a sentence of numbers, having removed

elements of the input that were not larger than
all numbers to the right of them.

(make-decreasing '(9 6 7 4 6 2 3 1))
  (9 7 6 3 1)
(make-decreasing '(3))  (3)

Write first as a recursion, then as a HOF

2

Schedule

Lecture: CS3 Projects
Lab: Begin work on CS3 Big Project

April 16-2013

Lecture (5-7 pm): Midterm #2
 145 Dwinelle
Lab: Advanced list processing

April 9-1312

Lecture: Midterm review, tree recursion
Lab: Lists, tree-recursion
 Miniproject #3 due Tuesday

April 211

Mar 26-30 Spring Break

Lecture: Higher-order function review
Lab: More Higher order functions
 Miniproject #3 assigned

Mar 19-2310

Lab materials
• Last week:

- day-span using higher order procedures
- tic-tac-toe

• This week:
- A half day working further on tic-tac-toe (T/W)
- Some "Challenging review problems", with

solutions (T/W)
- Work on the miniproject (all week)

every containing every
• You can mimic 2-stage recursion, applying a

function to each letter of each word.

• You can get combinatoric effects:

(define (pair-all sent)
(every (lambda (one)

 (every (lambda (two)
 (word one two))
 sent))
 sent))

(pair-all '(a b c))  ???

every containing every containing…
(make-kw '(s t) '(a o)) 
 (sas sat sos sot tas tat tos tot)
(make-kw '(l n k t s) '(a e i o u))  225 words!

(define (make-kw consonants vowels)
 (every (lambda (c)
 (every (lambda (v)

 vowels))
 consonants))

(define (make-kw consonants vowels)
 (every (lambda (c)
 (every (lambda (v)
 (every (lambda (c2)
 (word c v c2))
 consonants))
 vowels))
 consonants))

 6

accumulate can return a sentence…

- the first time accumulate is run, it reads the last
two words of the input sentence, and returns a
sentence

- in later calls, it uses the return value of its
procedure (which is a sentence) as its 2nd
argument, and the next work as its 1st.

Write pair-conseq:

(pair-conseq '(a b c d))  (ab bc cd)

(define (concat-pairs sent)
 (accumulate (lambda (wd so-far)

(if (word? so-far)
 (se (word wd so-far))
 (se (word wd (first (first so-far))) so-far))
)

 sent))

lambda

Click to add text

the lambda form
• "lambda" is a special form that returns a

function:

(lambda (arg1 arg2 …)
statements
)

(lambda (x) (* x x))

 ➩ ➩ ➩ ➩ ➩
 a procedure that takes one argument and multiplies it by itself

Use lambda anywhere you need a function

(define square
 (lambda (x) (* x x)))

(every (lambda (x) (* x x))
 '(1 2 3))
  (1 4 9)

((lambda (x) (* x x)) 3)
  9

10

make-bookends (a small problem)

• Write make-bookends, which is used this
way:

((make-bookends 'o) 'hi)  ohio

((make-bookends 'to) 'ron)  toronto

(define tom-proc (make-bookends 'tom))
(tom-proc "")  tomtom

(define (make-bookends wd)
 (lambda (inner-wd) (word wd inner-wd wd)))

11

You need lambda when…
…you need a procedure to make reference to

more values than you can pass it.

For instance, when a procedure for use in an
every needs two parameters

(prepend-every 'sir- '(sam mary loin))
  (sir-sam sir-mary sir-loin)

Write prepend-every

Write appearances

Problems

Click to add text

13

Write successive-concatenation
(sc '(a b c d e))
 (a ab abc abcd abcde)
(sc '(the big red barn))
 (the thebig thebigred thebigredbarn)

(define (sc sent)
 (accumulate
 (lambda ??
)
 sent))

(define (sc sent)
 (accumulate
 (lambda (wd sent-so-far)
 (if (word? sent-so-far)
 (se wd (word wd sent-so-far)) ;; initial invocation
 (se wd ;; other invocations
 ;;prepend-each
 (every
 (lambda (sent-so-far-element)
 (word wd sent-so-far-element))
 sent-so-far)))

)
 sent))

14

make-decreasing
• make-decreasing

- Takes a sentence of numbers
- Returns a sentence of numbers, having removed

elements of the input that were not larger than
all numbers to the right of them.

(make-decreasing '(9 6 7 4 6 2 3 1))
  (9 7 6 3 1)
(make-decreasing '(3))  (3)

Write first as a recursion, then as a HOF

;; recursion -- left to right
(define (make-decreasing sent)
 (cond ((or (empty? sent)
 (empty? (bf sent)))
 sent)
 ((bigger-than-all? (first sent) (bf sent))
 (se (first sent)
 (make-decreasing (bf sent))))
 (else (make-decreasing (bf sent)))
))

(define (bigger-than-all? num sent)
 (cond ((empty? sent) #t)
 ((> num (first sent))
 (bigger-than-all? num (bf sent)))
 (else #f)))

;; HOF
(define (make-decreasing sent)
 (accumulate
 (lambda (left right)
 (if (word? right)
 (if (< right left)
 (se left right)
 (se right))
 (if (< (first right) left)
 (se left right)
 right)))
 sent))

