
CS3:
Introduction to Symbolic

Programming

Spring 2007 Nate Titterton
nate@berkeley.edu

Lecture 9:
More higher-order functions,

lambda, tic-tac-toe

Schedule

Midterm #2April 912

Lecture: Midterm review, tree recursion
Lab: Lists, tree-recursion
 Miniproject #3 due Tuesday

April 211

Mar 26-30 Spring Break

Lecture: Higher-order function review
Lab: More Higher order functions
 Miniproject #3 assigned

Mar 19-2310

Lecture: Higher order functions, lambda
Reading: Simply Scheme, Ch 9, 10
 "DbD" HOF version
Lab: Higher order functions,
 tic-tac-toe

Mar 12-169

Tic Tac Toe

 X | |
---+---+---
 O | O | X
---+---+---
 | |

 "X _ _"

 "O O X"

 "_ _ _"

"X _ _ O O X _ _ _"

The board

 X | |
---+---+---
 O | O | X
---+---+---
 | |

"X _ _ O O X _ _ _"

Triples (another representation of a board)

()x23 oox 789 xo7 2o8 3x9 xo9 3o7

Tic-tac-toe hints

• Read the chapter!
• You will need to be familiar with vocabulary

- positions, triples, "forks", "pivots", and so on
• This chapter in the book comes before

recursion.
- You would solve things differently if you used

recursion
• The code (at the end of the chapter) has no

comments.

Higher-order functions: review

Higher order function (HOFs)
• A HOF is a procedure that takes a procedure

as an argument.
• There are three main ones that work with

words and sentences:

- every
- take a one-argument procedure that returns a word
- do something to each element

- keep
- takes a one-argument predicate
- return only certain elements

- accumulate
- takes a two-argument procedure
- combine the elements

A definition of every
(define (my-every proc ws)
 (if (empty? ws)
 '()
 (se (proc (first ws))
 (my-every (bf ws))
)))

• HOFs do a lot of work for you:
- Checking the conditional
- Returning the proper base case
• Combing the various recursive steps
• Invoking itself recursively on a smaller problem

Accumulate (1/2)

• The direction matters: right to left
- (accumulate / '(4 2 2))

does not equal 1, but 4.

• Think about expanding an accumulate

(accumulate + '(1 2 3 4))
 (+ 1 (+ 2 (+ 3 4)))

(accumulate / '(4 2 2))
 (/ 4 (/ 2 2))

accumulate (2/2)

• accumulate can return a sentence…
(accumulate ?? '(a b c d))

 (ab bc cd)
- the first time accumulate is run, it reads the last

two words of the input sentence

- in later calls, it uses the return value of its
procedure (which is a sentence) as one of its
arguments

Any questions from last week?
• You wrote and played with every, keep, and
accumulate

• You used them in combination:

(gpa '(A A F C B))
  2.6 (average of 4, 4, 0, 2, 3)

(gpa-with-p/np '(A A F NP P C B))
  2.6 (average of 4, 4, 0, 2, 3)

(true-for-all? even? '(2 4 6 8))
  #t

Which HOFs would you use? (1/2)

1) capitalize-proper-names
(c-p-n '(mr. smith goes to washington))  (mr. Smith goes to Washington)

3) count-if
(count-if odd? '(1 2 3 4 5))  3

5) longest-word
(longest-word '(I had fun on spring break))  spring

7) count-vowels-in-each
(c-e-l '(I have forgotten everything))

 (1 2 3 3)

Which HOFs would you use? (2/2)

1) squares-greater-than-100
(s-g-t-100 '(2 9 13 16 9 45))

 (169 256 2025)
3) root of the sum-of-squares

(sos '(1 2 3 4 5 6 7))
 (sqrt (+ (* 1 1) (* 2 2) …)
 30

5) successive-concatenation
(sc '(a b c d e))

 (a ab abc abcd abcde)

defining variables, let, and lambda

Three ways to define a variable
1. In a procedure call (e.g., the variable

proc):
(define (doit proc value)

;; proc is a procedure here…
(proc value))

3. As a global variable
(define *alphabet* '(a b c d e …))
(define *month-name* '(january …))

5. With let

Using let to define temporary variables
• let lets you define variables within a

procedure:

(define (scramble-523 wd)
 (let ((second (first (bf wd)))
 (third (first (bf (bf wd))))
 (fifth (item 5 wd))
)
 (word fifth second third)))

(scramble-523 'meaty)  yea

(define pi 3.14159265)
(define (… blah …)
 … lots of code here …
 (* pi radius)
 … more code here …

(define (… blah …)
 (let ((pi 3.14159265)))
 … lots of code here …
 (* pi radius)
 … more code here …

Any differences?

alpha beta pi zeta)

alpha beta pi zeta)

YES!

In Scheme, procedures are first-class objects

• You can assign them a name
• You can pass them as arguments to

procedures
• You can return them as the result of

procedures
• You can include them in data structures

1. Well, you don't know how to do all of these yet.

3. What else in scheme is a first-class object?

The "hard" one is #3: returning procedures

;; this returns a procedure
(define (make-add-to number)
 (lambda (x) (+ number x)))

;; this also returns a procedure
(define add-to-5 (make-add-to 5))

;; hey, where is the 5 kept!?
(add-to-5 8)  13

((make-add-to 3) 20)  23

the lambda form
• "lambda" is a special form that returns a

function:

(lambda (arg1 arg2 …)
statements
)

(lambda (x) (* x x))

 ➩ ➩ ➩ ➩ ➩
 a procedure that takes one argument and multiplies it by itself

Using lambda with define

• These are the same:

(define (square x)
 (* x x))

(define square
 (lambda (x) (* x x))
)

Using lambda with define

• These are VERY DIFFERENT:

(define (adder-1 y)
 (lambda (x) (+ x 1)))

(define adder-2
 (lambda (x) (+ x 1)))

(lambda (sent)
 (if (empty? sent)
 '()
 (se (square (first sent))
 (???? (bf sent)))))

Can a lambda-defined function be recursive?

When do you NEED lambda?
1. When you need the context (inside a two-

parameter procedure)

(add-suffix '-is-great '(haddad sam mary))
  (haddad-is-great sam-is-great
 mary-is-great)

3. When you need to make a function on the
fly

Problems

Hangman-status

(hangman-status 'joebob 'abcde)
  __eb_b

(define (hangman-status secret-wd ltrs)
 ???
)

Write successive-concatenation
(sc '(a b c d e))
 (a ab abc abcd abcde)
(sc '(the big red barn))
 (the thebig thebigred thebigredbarn)

(define (sc sent)
 (accumulate
 (lambda ??
)
 sent))

2

Schedule

Midterm #2April 912

Lecture: Midterm review, tree recursion
Lab: Lists, tree-recursion
 Miniproject #3 due Tuesday

April 211

Mar 26-30 Spring Break

Lecture: Higher-order function review
Lab: More Higher order functions
 Miniproject #3 assigned

Mar 19-2310

Lecture: Higher order functions, lambda
Reading: Simply Scheme, Ch 9, 10
 "DbD" HOF version
Lab: Higher order functions,
 tic-tac-toe

Mar 12-169

3

Tic Tac Toe

Click to add text

 X | |
---+---+---
 O | O | X
---+---+---
 | |

 "X _ _"

 "O O X"

 "_ _ _"

"X _ _ O O X _ _ _"

The board

5

 X | |
---+---+---
 O | O | X
---+---+---
 | |

"X _ _ O O X _ _ _"

Triples (another representation of a board)

()x23 oox 789 xo7 2o8 3x9 xo9 3o7

(find-triples 'x__oox___)  (x23 oox 789 xo7 "2o8" "3x9" xo9 "3o7")

Tic-tac-toe hints

• Read the chapter!
• You will need to be familiar with vocabulary

- positions, triples, "forks", "pivots", and so on
• This chapter in the book comes before

recursion.
- You would solve things differently if you used

recursion
• The code (at the end of the chapter) has no

comments.

Higher-order functions: review

Click to add text

Higher order function (HOFs)
• A HOF is a procedure that takes a procedure

as an argument.
• There are three main ones that work with

words and sentences:

- every
- take a one-argument procedure that returns a word
- do something to each element

- keep
- takes a one-argument predicate
- return only certain elements

- accumulate
- takes a two-argument procedure
- combine the elements

9

A definition of every
(define (my-every proc ws)
 (if (empty? ws)
 '()
 (se (proc (first ws))
 (my-every (bf ws))
)))

• HOFs do a lot of work for you:
- Checking the conditional
- Returning the proper base case
• Combing the various recursive steps
• Invoking itself recursively on a smaller problem

Accumulate (1/2)

• The direction matters: right to left
- (accumulate / '(4 2 2))

does not equal 1, but 4.

• Think about expanding an accumulate

(accumulate + '(1 2 3 4))
 (+ 1 (+ 2 (+ 3 4)))

(accumulate / '(4 2 2))
 (/ 4 (/ 2 2))

 11

accumulate (2/2)

• accumulate can return a sentence…
(accumulate ?? '(a b c d))

 (ab bc cd)
- the first time accumulate is run, it reads the last

two words of the input sentence

- in later calls, it uses the return value of its
procedure (which is a sentence) as one of its
arguments

(define (concat-pairs sent)
 (accumulate (lambda (wd so-far)

(if (word? so-far)
 (se (word wd so-far))
 (se (word wd (first (first so-far))) so-far))
)

 sent))

Any questions from last week?
• You wrote and played with every, keep, and
accumulate

• You used them in combination:

(gpa '(A A F C B))
  2.6 (average of 4, 4, 0, 2, 3)

(gpa-with-p/np '(A A F NP P C B))
  2.6 (average of 4, 4, 0, 2, 3)

(true-for-all? even? '(2 4 6 8))
  #t

13

Which HOFs would you use? (1/2)

1) capitalize-proper-names
(c-p-n '(mr. smith goes to washington))  (mr. Smith goes to Washington)

3) count-if
(count-if odd? '(1 2 3 4 5))  3

5) longest-word
(longest-word '(I had fun on spring break))  spring

7) count-vowels-in-each
(c-e-l '(I have forgotten everything))

 (1 2 3 3)

1) Every
2) Keep
3) Accumulate (longest-word needs to compare elements of the sentence; it can't

consider each element in isolation)
4) Every containing a keep (count-if)

 14

Which HOFs would you use? (2/2)

1) squares-greater-than-100
(s-g-t-100 '(2 9 13 16 9 45))

 (169 256 2025)
3) root of the sum-of-squares

(sos '(1 2 3 4 5 6 7))
 (sqrt (+ (* 1 1) (* 2 2) …)
 30

5) successive-concatenation
(sc '(a b c d e))

 (a ab abc abcd abcde)

1) Keep containing an every
2) Accumulate containing an every
3) Just accumulate. This isn't an every, although it looks like it at first glance,

because you can't process the non-first elements without determining the elements
that came before!

defining variables, let, and lambda

Click to add text

Three ways to define a variable
1. In a procedure call (e.g., the variable

proc):
(define (doit proc value)

;; proc is a procedure here…
(proc value))

3. As a global variable
(define *alphabet* '(a b c d e …))
(define *month-name* '(january …))

5. With let

Using let to define temporary variables
• let lets you define variables within a

procedure:

(define (scramble-523 wd)
 (let ((second (first (bf wd)))
 (third (first (bf (bf wd))))
 (fifth (item 5 wd))
)
 (word fifth second third)))

(scramble-523 'meaty)  yea

(define pi 3.14159265)
(define (… blah …)
 … lots of code here …
 (* pi radius)
 … more code here …

(define (… blah …)
 (let ((pi 3.14159265)))
 … lots of code here …
 (* pi radius)
 … more code here …

Any differences?

alpha beta pi zeta)

alpha beta pi zeta)

YES!

19

In Scheme, procedures are first-class objects

• You can assign them a name
• You can pass them as arguments to

procedures
• You can return them as the result of

procedures
• You can include them in data structures

1. Well, you don't know how to do all of these yet.

3. What else in scheme is a first-class object?

First-class objects (in scheme) can:
-Be named
-Be an parameter to functions
-Be returned from functions
-Be stored in other data structures

The "hard" one is #3: returning procedures

;; this returns a procedure
(define (make-add-to number)
 (lambda (x) (+ number x)))

;; this also returns a procedure
(define add-to-5 (make-add-to 5))

;; hey, where is the 5 kept!?
(add-to-5 8)  13

((make-add-to 3) 20)  23

the lambda form
• "lambda" is a special form that returns a

function:

(lambda (arg1 arg2 …)
statements
)

(lambda (x) (* x x))

 ➩ ➩ ➩ ➩ ➩
 a procedure that takes one argument and multiplies it by itself

22

Using lambda with define

• These are the same:

(define (square x)
 (* x x))

(define square
 (lambda (x) (* x x))
)

The top form is just a shortcut, really, for the bottom form. We would get tired having
to type l-a-m-b-d-a all the time, so the above form is quicker.

23

Using lambda with define

• These are VERY DIFFERENT:

(define (adder-1 y)
 (lambda (x) (+ x 1)))

(define adder-2
 (lambda (x) (+ x 1)))

adder1 takes a single argument and returns a procedure (that takes a single argument
and returns 1 more than it)

adder2 takes a single argument and returns one more than it.

24

(lambda (sent)
 (if (empty? sent)
 '()
 (se (square (first sent))
 (???? (bf sent)))))

Can a lambda-defined function be recursive?

In cs3, nope.

But, you will find a way to make recursive lambda (non-named) functions if you
continue in CS. (You might google for '"anonymous recursion" in scheme' or
something like that).

25

When do you NEED lambda?
1. When you need the context (inside a two-

parameter procedure)

(add-suffix '-is-great '(haddad sam mary))
  (haddad-is-great sam-is-great
 mary-is-great)

3. When you need to make a function on the
fly

(define (add-suffix suf sent)
 (every
 (lambda (wd)
 (word wd suf)

)
 sent))

Problems

Click to add text

27

Hangman-status

(hangman-status 'joebob 'abcde)
  __eb_b

(define (hangman-status secret-wd ltrs)
 ???
)

(define (hangman-status secret-wd ltrs)
 (accumulate
 word
 (every (lambda (ltr)

 (if (member? ltr ltrs)
ltr
'_))

 secret-wd)
))

28

Write successive-concatenation
(sc '(a b c d e))
 (a ab abc abcd abcde)
(sc '(the big red barn))
 (the thebig thebigred thebigredbarn)

(define (sc sent)
 (accumulate
 (lambda ??
)
 sent))

Email me for the solution if you want it before next lecture!

