
CS3:
Introduction to Symbolic

Programming

Spring 2007 Nate Titterton
nate@berkeley.edu

Lecture 8:
Midterm 1, Last bit of recursion,

Higher order functions

Schedule

Spring BreakMar 26-3011

Lab: More Higher order functions…
Start on Miniproject #3?

Mar 19-2310

Lecture: Higher order functions
Reading: Simply Scheme, Ch 9, 10
 "DbD" HOF version
Lab: Higher order functions,
 tic-tac-toe
Note: Miniproject #2 is due (Tue/Wed)

Mar 12-169

Lecture: Today
Reading: Simply Scheme, ch 7-8
Lab (T/W): Miniproject #2
 Second Survey
Lab (T/F): Begin higher order functions

Mar 5 – 98

Midterm #1: overall

m1-scale

26.9
23.4

19.9
16.4

12.9
9.4

30

20

10

0

Std. Dev = 4.03
Mean = 20.6

N = 94.00

Midterm #1: questions
1. can-order?, write it and test it

• You did quite well here
2. Booleans (not-in-order?, etc.)
3. general-day-span-r

• 4b was the hard one!
4. scramble

Announcements

• If you have any questions or comments on
your midterm, please see me or your TA.

- Nate's office hours: 329 Soda, Wed 2-4

• The Tue/Thur 2-5 section is losing Alex, and
getting Bobak.

Number Spelling (Miniproject #2)

• A program to write out names of almost any
number

• Read Simply Scheme, page 233, which has
hints

• Another hint (principle): don't force
"everything" into the recursion.
- Special/border cases may be easier to handle

before you send yourself into a recursion

Goodbye recursion?
• Nope. We'll do more with recursion later

• What have we done in the last few weeks?
- Work with roman numerals
- "Advanced recursions": ones that work on

multiple sentences, or do more than one thing at
a time

- zip, merge, my-equal?, 1-extra?
- Recursive patterns (map, filter, etc)
- Sorting (insertion sort)
- Accumulating recursion (e.g., using so-far)
- Two-stage recursion (inner/outer)
- and more

roman-sum-helper (from lab)
Write roman-sum-helper:

(define (roman-sum number-sent)
(if (empty? number-sent)

 0
 (roman-sum-helper (first number-sent)
 (bf number-sent)
 (first number-sent))))

Roman-sum-helper takes three arguments:
(define (roman-sum-helper so-far number-list most-
recent) ...)

(roman-sum '(100 10 50 1 5)) will recurse with:
(roman-sum-helper 100 '(10 50 1 5) 100)
(roman-sum-helper 110 '(50 1 5) 10)
(roman-sum-helper 140 '(1 5) 50)
(roman-sum-helper 141 '(5) 1)
(roman-sum-helper 144 '() 5)

Accumulating versus "tail" recursions
• Accumulating recursions are sometimes

called "tail" recursions (by TAs, me, etc).
- But, not all recursions that keep track of a

number are "tail" recursions.

• A tail recursion has no combiner, so it can
end as soon as a base case is reached
- Compilers can do this efficiently

• An embedded recursion needs to combine
up all the recursive steps to form the
answer
- The poor compiler has to keep track everything

Tail or embedded? (1/2)

(define (length sent)
 (if (empty? sent)
 0
 (+ 1 (length (bf sent)))))

Embedded!

(length '(a b c d)) 
 (+ 1 (length '(b c d)))
 (+ 1 (+ 1 (length '(c d))))
 (+ 1 (+ 1 (+ 1 (length '(d)))))
 (+ 1 (+ 1 (+ 1 (+ 1 (length '())))))
 (+ 1 (+ 1 (+ 1 (+ 1 0))))
 (+ 1 (+ 1 (+ 1 1)))
 (+ 1 (+ 1 2))
 (+ 1 3)
 4

Tail or embedded? (2/2)

(define (find-evens sent)
 (cond ((empty? sent) ;base case
 '())
 ((odd? (first sent)) ;rec case 1
 (find-evens (bf sent)))
 (else ;rec case 2: even
 (se (first sent)
 (find-evens (bf sent))))
))

> (find-evens '(2 3 4 5 6 7))

 (se 2 (se 4 (se 6 '())))
 (2 4 6)

Higher Order Functions

What is a
procedure?

(or, a function).

Treating functions as things
• “define” associates a name with a value

- The usual form associates a name with a object
that is a function

 (define (square x) (* x x))
 (define (pi) 3.1415926535)

- You can define other objects, though:
 (define *pi* 3.1415926535)
 (define *month-names*
 ‘(january february march april may
 june july august september
 october november december))

"Global variables"
• Functions are "global", in that they can be

used anywhere:
(define (pi) 3.1415926535)
(circle-area (radius)

(* (pi) radius radius))

• A "global" variable, similarly, can be used
anywhere:

(define *pi* 3.1415926535)
(circle-area (radius)

(* *pi* radius radius))

Consider two forms of “month-name”:

 (define (month-name1 date)
 (first date))

 (define month-name2 first)

Are these the same?

Procedures can be taken as arguments…

(define (math-function? func)
 (or (equal? func +)
 (equal? func -)
 (equal? func *)
 (equal? func /)))

…and procedures can be returned from procedures

(define (choose-func name)
 (cond ((equal? name 'plus) +)
 ((equal? name 'minus) -)
 ((equal? name 'divide) /)
 (else 'sorry)))

(define (make-add-to number)
 (lambda (x) (+ number x)))

(define joe (make-add-to 5))

Higher order function (HOFs)

• A HOF is a function that takes a function as
an argument.

(define (do-math f arg1 arg2)
 (if (and (equal? arg2 0)
 (equal? f /))
 '(uh oh – divide by zero)
 (f arg1 arg2)))

The three we will focus on

• There are three main ones that work with
words and sentences:

every do something to each element

keep return only certain elements

accumulate combine the elements

• Most recursive functions that operate
on a sentence fall into:

Mapping: square-all
Counting: count-vowels, count-evens
Finding: member, first-even
Filtering: keep-evens
Testing: all-even?
Combining: sum-evens

Patterns for simple recursions

<- every

<- keep

<- accumulate

