
CS3:
Introduction to Symbolic

Programming

Spring 2007 Nate Titterton
nate@berkeley.edu

(Special) Lecture 6:
More Recursion

Midterm problems and review

Schedule

Lecture: Recursion
Lab: Miniproject #2

Mar 5 – 98

Lecture: Midterm 1
Lab: Advanced recursion

Feb 26 - Mar 27

Lecture: Special Lecture and Review
Reading: Simply Scheme, ch. 12, 13
 "Roman Numerals" case study
Lab: Work with Roman Numerals
 Two-argument recursion
 Tracing procedures

Feb 19-236

Lecture: Introduction to Recursion
Lab: Recursion

Feb 12-165

Announcements
• Nate's office hours:

- Wednesday, 2-4, in 329 Soda

• TA review session
- Saturday, Feb 24, 2-4pm, in 430 Soda
- Send questions to us before hand!

Midterm 1: Feb 26th (next week)
• Location: 160 Kroeber (same place)
• Time: In the lecture slot, plus 20 minutes

- (5:10-6:30)
• Open book, open notes.

- Nothing that can compute, though
• Everything we’ve covered, including the

coming TWO weeks on recursion.
- (But not the "roman numerals" case study)

• TA-led review session
- Sat, Feb 24, 2-4pm, 430 Soda (Wozniak Lounge)

• Practice exams in your reader, solutions to
be announced on Course Portal

Lab materials (last week)
• "combining method" with

- downup,
- reverse,
- copies,
- sum-in-interval,
- appearances

• Data abstraction with celebrity
• The replacement modeler
• Work with recursive day-span
• Write

- down-to-0
- remove
- all-odd?
- dupls-removed
- is-sorted?

All recursion procedures need…

1. Base Case (s)
• Where the problem is simple enough to be solved

directly

2. Recursive Cases (s)
1. Divide the Problem

• into one or more smaller problems
2. Invoke the function

• Have it call itself recursively on each smaller part
3. Combine the solutions

• Combine each subpart into a solution for the whole

(define (find-evens sent)
 (cond ((empty? sent)
 '())
 ((odd? (first sent))
 (find-evens (bf sent)))
 (else
 (se (first sent)
 (find-evens (bf sent))))
))

Locate the "parts"

Base Case

Divide the problem Combine the solutions

Invoke the function
recursively

fa05 Midterm #1, 3c (1/6)
The following are buggy versions of the recursive procedure day-
sum, defined in the cases study Difference between dates, part II.
(The code for the case study is included as an appendix). The
bugs result from small changes which are underlined.

For each version, note whether the bug creates a problem in the

a) conditional tests,
b) the base case return value,
c) making the problem smaller,
d) calling the function recursively, or
e) combining the recursive calls.

Also briefly describe in English the effect of the bug on the
operation of day-span as a whole (not just on day-sum)—this
should take between 1 and 2 sentences for each case. You might
include an example call to day-span illustrating the problem,
although this isn't necessary with a sufficient explanation (and,
might be wrong!).

fa05 Midterm #1, 3c (2/6)

(define (general-day-span earlier-date later-date)
 (+ (days-remaining earlier-date)
 (day-sum
 (next-month-number earlier-date)
 (prev-month-number later-date))
 (date-in-month later-date)))

(define (day-sum first-month last-month)
 (if (> first-month last-month)
 0
 (+ (days-in-month (name-of first-month))
 (day-sum (+ first-month 1) last-month))
))

The real code

fa05 Midterm #1, 3c (3/6)

(define (day-sum first-month last-month)
 (if (>= first-month last-month)
 0
 (+ (days-in-month (name-of first-month))
 (day-sum (+ first-month 1) last-month))
))

version 1

fa05 Midterm #1, 3c (4/6)

(define (day-sum first-month last-month)
 (if (> first-month last-month)
 0
 (+ (days-in-month (name-of first-month))
 (day-sum first-month (+ last-month 1)))
))

version 2

fa05 Midterm #1, 3c (6/6)

(define (day-sum first-month last-month)
 (if (< first-month last-month)
 0
 (+ (days-in-month (name-of first-month))
 (day-sum (+ first-month 1) last-month))
))

version 3

fa05 Midterm #1, 3c (6/6)

(define (day-sum first-month last-month)
 (if (> first-month last-month)
 1
 (+ (days-in-month (name-of first-month))
 (day-sum (+ first-month 1) last-month))
))

version 4

Multiple ways of "approaching" recursion

1. The combining method
• Write versions for specific "sizes" of arguments, and

then generalize the pattern
2. Write many base cases

• Solve all the cases you can directly, then use a clone
3. Use the substitution model

• Expand the recursive calls to see a single, large
expression

4. Leap of faith
• Assume the procedure already works while you are

writing it, then come back to base cases
5. Tracing

• A way to see each internal recursive call (i.e., arguments
and return values).

6. Patterns and Templates
• Recursions fall into patterns … after the midterm!

Midterm Problem: what comes between? (1/3)

Write a procedure called between? which takes three
numbers as arguments, and returns true if and only if
the second argument is between and not equal to the
first and the third:

(between? 5 6 7)  #t
(between? 7 6 5)  #t

Part A: Write between? without using if or cond.

Midterm Problem: what comes between? (2/3)

Part B:

 Write between? without using and or or.

Midterm Problem: what comes between? (3/3)

Part C:

Write a suite of test cases for between?. Make sure
you test the possible sets of parameters exhaustively
as possible, in order to test different ways the code
could be written.

Also, make sure you descive what the result of the
call should be!

Midterm Problem: sub-cursion?
Write the procedure sub-sentence, which returns a middle
section of a sentence. It takes three parameters; the first
identifies the index to start the middle section, and will be 1 or
greater; the second identifies the length of the middle section,
and will be 0 or greater; and the last is the sentence to work
with.

Do not use any helper procedures.
Do not use the item procedure in your solution.

(sub-sentence 2 3 '(a b c d e f g))  (b c d)
(sub-sentence 3 2 '(a b))  ()
(sub-sentence 3 0 '(a b c d e)  ()
(sub-sentence 3 9 '(a b c d e)  (c d e)

