CS3:

Introduction to Symbolic
Programming

Lecture 5:
Recursion

Spring 2007 Nate Titterton
nate@berkeley.edu



Schedule

Feb 19-23

Lecture: <holiday>
Reading: "Roman Numerals" case study

Special Lecture: Recursion, Midterm
(Tuesday, Feb 20, 9:30-10:30, 306 Soda)

Feb 26 - Mar 2

Lab: Motrerecurston————————————————————————————————————————
Lecture: Midterm 1

Lab: Advanced recursion

Mar5-9

Lecture: Recursion
Lab: Miniproject #2




Announcements
* Nate's office hours:
- Wednesday, 2-4, in 329 Soda

* Reading for this week
- Simply Scheme, chapter 11
- Difference between Dates, Recursive version
- (These will be on the midterm)

* More reading next week...

* The last day to drop is Feb 16th



Midterm 1: Feb 26" (in two weeks)

* Location: ?7??
- Will send out via email, ucwise announcments

* Time: In the lecture slot, plus 20 minutes
- (5:10-6:30)

* Open book, open notes.
- Nothing that can compute, though

* Everything we’ve covered, including the
coming TWO weeks on recursion.
- (But not the "roman numerals” case study)



Special midterm issues

* Special Lecture
- Tuesday, Feb 20t, 9:30-10:30, 306 Soda

* TA-led review session: Date and Loc TBD
- Probably Sat, Feb 24, 2-4pm, 430 Soda

* There are two practice exams in your reader

- The first is shorter than yours will be, the second
Is the right length

- Do these as if you were taking a Midterm: i.e., in
one sitting, without STk, etc.

* Check the announcements for solutions, and
more practice exams.



Any questions about the miniproject?



Recursion

An algorithmic technique where a function, in order to
accomplish a task, calls itself with some part of the
task.



Using recursive procedures

* Everyone thinks it's hard!
- (well, it is... ahal!-hard, not complicated-hard)

* Using repetition and loops to find answers

* The first technique (in this class) to handle
arbitrary length inputs.

- There are other techniques, easier for some
problems.



All recursion procedures need...

1. Base Case (s)

2. Recursive Cases (s)
1. Divide the Problem

2. Invoke the function

3. Combine the solutions



Problem: find the first even number in a sentence of numbers

(define (find-first-even sent)
(Lf {éweni? (first sent))

(fdpstheebhiye case>ybase case: return
; that even number
(findtfhierstcavenvébfasenrl) )
;recurse on the
; rest of sent

))



Count the number of words in a sentence

(define (count sent)
(Lf (empty? (bf sent))
1 ;base case: return 1

(+ 1
(count (bf sent))) ;recurse on the
; rest of sent

))



Base cases can be tricky

* By checking whether the (bf sent) is empty,
rather than sent, we won't choose the recursive
case correctly on that last element!

- Or, we need two base cases, one each for the last element
being odd or even.

 Better: let the recursive cases handle all the
elements

Your book describes this well



Count the number of words in a sentence

(define (count sent)
(1f (empty? (bf semht)) )
)] ;base case: return 10

(+ 1
(count (bf sent)) ;recurse on the
; rest of sent

))



> (count '(a b

C

(+ 1

sent=(abc)

(+ 1

sent=(bc)

sent=(c)

(+ 1

sent=()

2 (+1 (+1 (+10)))

2> 3




Problem: find all the even numbers in a sentence of numbers

(define (find-evens sent)
(cond ((empty? sent) rbase case

" () )

((odd? (first sent)) ;rec case 1l: odd
(find-evens (bf sent)) )

(else ;rec case 2: even
(se (first sent)

(find-evens (bf sent))) )

))



> (find-evens '(2 3 4 5 6

sent=(23456)

(se 2 sent=(3456)
sent=(456)
(se 4 sent=(56)
sent=(6)
(se 6 sent=()

()

> (se 2 (se 4 (se 6 ())))
> (2 4 6)



