
CS3:
Introduction to Symbolic

Programming

Spring 2007 Nate Titterton
nate@berkeley.edu

Lecture 5:
Recursion

Schedule

Lecture: Recursion
Lab: Miniproject #2

Mar 5 – 98

Lecture: Midterm 1
Lab: Advanced recursion

Feb 26 - Mar 27

Lecture: <holiday>
Reading: "Roman Numerals" case study
Special Lecture: Recursion, Midterm
 (Tuesday, Feb 20, 9:30-10:30, 306 Soda)
Lab: More recursion

Feb 19-236

Lecture: Introduction to Recursion
Reading: Simply Scheme, Chapter 11
 DbD case study, recursive version
Lab: Recursion

Feb 12-165

Announcements
• Nate's office hours:

- Wednesday, 2-4, in 329 Soda

• Reading for this week
- Simply Scheme, chapter 11
- Difference between Dates, Recursive version
- (These will be on the midterm)

• More reading next week…

• The last day to drop is Feb 16th

Midterm 1: Feb 26th (in two weeks)
• Location: ???

- Will send out via email, ucwise announcments

• Time: In the lecture slot, plus 20 minutes
- (5:10-6:30)

• Open book, open notes.
- Nothing that can compute, though

• Everything we’ve covered, including the
coming TWO weeks on recursion.

- (But not the "roman numerals" case study)

Special midterm issues
• Special Lecture

- Tuesday, Feb 20th, 9:30-10:30, 306 Soda

• TA-led review session: Date and Loc TBD
- Probably Sat, Feb 24, 2-4pm, 430 Soda

• There are two practice exams in your reader
- The first is shorter than yours will be, the second

is the right length
- Do these as if you were taking a Midterm: i.e., in

one sitting, without STk, etc.

• Check the announcements for solutions, and
more practice exams.

Any questions about the miniproject?

An algorithmic technique where a function, in order to
accomplish a task, calls itself with some part of the
task.

Recursion

Using recursive procedures
• Everyone thinks it's hard!

- (well, it is… aha!-hard, not complicated-hard)

• Using repetition and loops to find answers

• The first technique (in this class) to handle
arbitrary length inputs.
- There are other techniques, easier for some

problems.

All recursion procedures need…

1. Base Case (s)
• Where the problem is simple enough to be solved

directly

2. Recursive Cases (s)
1. Divide the Problem

• into one or more smaller problems
2. Invoke the function

• Have it call itself recursively on each smaller part
3. Combine the solutions

• Combine each subpart into a solution for the whole

(define (find-first-even sent)
 (if (even? (first sent))

 (first sent) ;base case: return
 ; that even number
 (find-first-even (bf sent))
 ;recurse on the
 ; rest of sent
))

Problem: find the first even number in a sentence of numbers

 (if <test>

 (<do the base case>)

 (<do the recursive case>)

Count the number of words in a sentence

(define (count sent)
 (if (empty? (bf sent))
 1 ;base case: return 1
 (+ 1
 (count (bf sent))) ;recurse on the
 ; rest of sent

))

Base cases can be tricky
• By checking whether the (bf sent) is empty,

rather than sent, we won't choose the recursive
case correctly on that last element!
- Or, we need two base cases, one each for the last element

being odd or even.
• Better: let the recursive cases handle all the

elements

Your book describes this well

(define (count sent)
 (if (empty? sent)
 0 ;base case: return 0
 (+ 1
 (count (bf sent)) ;recurse on the
 ; rest of sent

))

(define (count sent)
 (if (empty? (bf sent))
 1 ;base case: return 1
 (+ 1
 (count (bf sent)) ;recurse on the
 ; rest of sent

))

Count the number of words in a sentence

> (count '(a b c))

 (+ 1 (+ 1 (+ 1 0)))
 3

(+ 1

(+ 1
(+ 1

0

sent = (a b c)

sent = (b c)

sent = (c)

sent = ()

(define (find-evens sent)
 (cond ((empty? sent) ;base case
 '())
 ((odd? (first sent)) ;rec case 1
 (find-evens (bf sent)))
 (else ;rec case 2: even
 (se (first sent)
 (find-evens (bf sent))))
))

(define (find-evens sent)
 (cond (;base case
)
 (;rec case 1: odd
)
 (;rec case 2: even

)
))

Problem: find all the even numbers in a sentence of numbers

> (find-evens '(2 3 4 5 6))

 (se 2 (se 4 (se 6 ())))
 (2 4 6)

(se 2

(se 4
(se 6

()

sent = (2 3 4 5 6)

sent = (3 4 5 6)

sent = (4 5 6)

sent = (5 6)

sent = (6)

sent = ()

