
CS3: 
Introduction to Symbolic 

Programming

Spring 2007 Nate Titterton
nate@berkeley.edu

Lecture 4:
"Difference Between Dates"

and
data abstraction



2  

Schedule

Lecture: Midterm 1 
Lab: Advanced recursion

Feb 26 - Mar 27

Lecture: <holiday>
Lab: Recursion II

Feb 19-236

Lecture: Introduction to Recursion
Lab: Recursion

Feb 12-165

Lecture: Data abstraction in DbD: 
                extending to short dates
Lab: More Difference between dates
         Miniproject 1

Feb 5-94

Lecture: Conditionals, Case Studies
Reading: "DbD" case study
Lab: Explore "Difference between Dates"

Jan 29-Feb 33



How useful has the case study 
been?



Any questions about last weeks materials?

• (SchemeHandler…)



This week
• A few exercises on Tue/Wed

• Mini-project #1: You are to write cetury-
day-span
-  Extend the day-span program to correctly 

handle dates in (possibly) different years.

- Consider the central lesson of the case study: 
there are easier and harder ways to solve 
problems.  Choose easier.



This is your first large program
Use helper functions

- Break out self-contained tasks into helper 
procedures: they should be easy to name.

- If you can get your main procedure to read like 
English, you are doing well.

• Test, and test some more.
- Remember to put test cases above each helper 

procedure.
• Reuse code that you have already written 
• Add comments!

- Above each procedure, at least.
- Within some cond cases, additionally.



 Abstraction

“the process of leaving out consideration of 
one or more properties of a complex object 
or process so as to attend to others”



• Abstracting with a new function
(square x) instead of (* x x)
(third sent) instead of (first (bf (bf sent)))

• Abstracting a new datatype
A datatype provides functionality necessary to 

store "something" important to the program

- Selectors: to look at parts of the "something".
- Constructor: to create a new "something".
- Tests (sometimes): to see whether you have a 

"something", or a "something else"



Data abstration: words and sentences

Constructors: procedures to make a piece of data
-word, sentence

Selectors: procedures to return parts of that data 
piece
-first, butfirst, etc.

Tests: predicates that tell you which type of data 
you have
-word?, sentence?



10  

card-greater? (from fa05 midterm 1)

Write card-greater? The procedure takes two cards and returns 
true if and only if the first card is bigger than second.

Cards are represented by a two-character word, where the first 
character represents the rank (a, k, q, j, 0, 9, 8, 7, 6, 5, 4, 3, and 2), 
and the second character represents the suit (s, h, d, and c). For 
instance, 2h is the two of hearts, qc is queen of clubs, 0s is the 10 of 
spades, etc. For this problem, consider all spades to rank higher than 
hearts, which all rank higher than diamonds, which all rank higher 
than clubs.

(card-greater? 'ac '3d)  #f
(card-greater? 'kh 'qh)  #t
(card-greater? '4s '4s)  #f

Comment all your procedures. Assume you have a working version of 
outranks?, as you wrote in lab, to use. (Remember, outranks? 
takes two ranks and returns true if the first is higher than the second.)



Benefits
• Why is "leaving out consideration of", or 

"not knowing about", a portion of the 
program a good thing?

• Consider two ways one can 
"understand a program":

- Knowing what each function does
- Knowing what the inputs are (can be), and 

what the outputs are (will be).



Data abstraction in the DbD code

• How does the code separate out processing 
of the date-format from the logic that does 
the "real" work?

- Selectors
- month-name   (takes a date)
- date-in-month (takes a date)
- ? month-number (takes a month name)

- Constructors?  Tests?


