CS3:

Introduction to Symbolic
Programming

Lecture 3:
Review of Conditionals
Case Studies

Fall 2007 Nate Titterton
nate@berkeley.edu

Announcements

* Nate's office hours:
- Wednesday, 2-4
- 329 Soda

* Tue/Wed is a Catch-up day.

- Use this day to catch up! That is, go back over
the last two weeks and fill in places you missed

* We are still waiting on readers for homework
grading...

Schedule

2 Jan 22-26 Lecture: Introduction, Review, Conditionals
Reading: Simply Scheme, ch. 3-6
Lab: Conditionals

4 Feb 5-9 Lecture: Data abstraction in DbD

Lab: Miniproject 1

5 Feb 12-16 Lecture: Introduction to Recursion
Lab: Recursion

6 | Feb19-23 Lecture: <holiday>

Lab: Recursion II

7 Feb 26 - Mar 2 | Lecture: Midterm 1
Lab: Advanced recursion

Concepts from last week (1/4)

1. Conditionals
- cond and if

— These are special forms, and don't follow the
standard rules of evaluation

2. Booleans
- truth (#t, or anything) and non-truth (#£)

4. logical operators
°* and, or, not

Concepts from last week (2/4)
1. Writing conditionals using only and/or or
if/cond.

3. Organizing a series of conditionals

5. Predicates
- procedures that return #t or #£
- by convention, their names end with a "?"

1.

Concepts from last week (3/4)

Testing

There is much more to programming than
writing code. Testing is crucial, and an
emphasis of this course
Analysis
Debugging
Maintenance.
"Design”
Testing is an art (there is no one right way)
boundary cases, helper procedures, etc.

Concepts from last week (4/4)

1. Helper procedures

- Choosing when to write helper procedures is
an ... art. There is no one right way.

- This is an important skill in programming, and
one you will need to focus on.

Functional abstraction

* Abstraction helps make programs
understandable by simplifying them.

- By letting the programmer or maintainer ignore
details about a task at hand

- Helper functions, when done correctly, do this

A video resource

Weiner lecture archives

* The "course" is an earlier CS3

- Different emphasis; early lectures may work
better than later ones

- Very different lab experience
- Same book

http://wla.berkeley.edu/

What does “understand a program” mean?

Case Studies
* Reading!?

* A case study:
- starts with a problem statement
- ends with a solution
- in between, a ...story... (narrative)
- How a program comes to be

* You will write “day-span”, which calculates
the number of days between two dates in a
year

You need to read this

* The lab will cover the case study through a
variety of activities.

- This will culminate in the first “mini-project”,
extending day-span to work with different years.

* We just may base exam questions on it

* It will make you a better programmer!
4 out of 5 educational researchers say so.

Some important points

* There is a large "dead-end" in this text
- Like occur in many programming projects

- Good "style" helps minimize the impacts of
these

* There is (often) a difference between good
algorithms and between human thinking

Extra Slides

(check for code)

Write an answer procedure.

Write a procedure named answer that, given a sentence that
represents a question, returns a simple answer to that
question. (A question's last word ends with a question mark.) If
the argument sentence is not a question, answer should
merely return the argument unchanged.

- Given (am i ...?), answer should return
(you are ...).

- Given (are you ...?),answer should return
(1iam ...).

- Given (some-other-word i ... ?), answer should
return (you some-other-word ...).

- Given (some-other-word you ... ?), answer
should return (i some-other-word ...).

- Given any other question, answer should return the result
of replacing the question mark by a period.

