
CS3:
Introduction to Symbolic

Programming

Fall 2007 Nate Titterton
nate@berkeley.edu

Lecture 3:
Review of Conditionals

Case Studies

Announcements

• Nate's office hours:
- Wednesday, 2-4
- 329 Soda

• Tue/Wed is a Catch-up day.
- Use this day to catch up! That is, go back over

the last two weeks and fill in places you missed

• We are still waiting on readers for homework
grading…

Schedule

Lecture: Midterm 1
Lab: Advanced recursion

Feb 26 - Mar 27

Lecture: <holiday>
Lab: Recursion II

Feb 19-236

Lecture: Introduction to Recursion
Lab: Recursion

Feb 12-165

Lecture: Data abstraction in DbD
Lab: Miniproject 1

Feb 5-94

Lecture: Conditionals, Case Studies
Reading: "Difference between Dates" case

 study, in the reader (first version)
Lab: Explore "Difference between Dates"

Jan 29-Feb 33

Lecture: Introduction, Review, Conditionals
Reading: Simply Scheme, ch. 3-6
Lab: Conditionals

Jan 22-262

Concepts from last week (1/4)
1. Conditionals

- cond and if
- These are special forms, and don't follow the

standard rules of evaluation

2. Booleans
- truth (#t, or anything) and non-truth (#f)

4. logical operators
• and, or, not

Concepts from last week (2/4)

1. Writing conditionals using only and/or or
if/cond.

3. Organizing a series of conditionals

5. Predicates
- procedures that return #t or #f
- by convention, their names end with a "?"

Concepts from last week (3/4)

1. Testing
- There is much more to programming than

writing code. Testing is crucial, and an
emphasis of this course
- Analysis
- Debugging
- Maintenance.
- "Design"

- Testing is an art (there is no one right way)
- boundary cases, helper procedures, etc.

Concepts from last week (4/4)

1. Helper procedures
- Choosing when to write helper procedures is

an … art. There is no one right way.

- This is an important skill in programming, and
one you will need to focus on.

Functional abstraction

• Abstraction helps make programs
understandable by simplifying them.

- By letting the programmer or maintainer ignore
details about a task at hand

- Helper functions, when done correctly, do this

A video resource

• http://wla.berkeley.edu
Weiner lecture archives

• The "course" is an earlier CS3
- Different emphasis; early lectures may work

better than later ones
- Very different lab experience
- Same book

http://wla.berkeley.edu/

What does “understand a program” mean?

Case Studies
• Reading!?

• A case study:
- starts with a problem statement
- ends with a solution
- in between, a …story… (narrative)
- How a program comes to be

• You will write “day-span”, which calculates
the number of days between two dates in a
year

You need to read this
• The lab will cover the case study through a

variety of activities.
- This will culminate in the first “mini-project”,

extending day-span to work with different years.

• We just may base exam questions on it

• It will make you a better programmer!
4 out of 5 educational researchers say so.

Some important points
• There is a large "dead-end" in this text

- Like occur in many programming projects
- Good "style" helps minimize the impacts of

these

• There is (often) a difference between good
algorithms and between human thinking

Extra Slides

(check for code)

Write an answer procedure.
Write a procedure named answer that, given a sentence that

represents a question, returns a simple answer to that
question. (A question's last word ends with a question mark.) If
the argument sentence is not a question, answer should
merely return the argument unchanged.

- Given (am i ...?), answer should return
(you are ...).

- Given (are you ...?), answer should return
(i am ...).

- Given (some-other-word i ... ?), answer should
return (you some-other-word ...).

- Given (some-other-word you ... ?), answer
should return (i some-other-word ...).

- Given any other question, answer should return the result
of replacing the question mark by a period.

