
CS3L:
Introduction to Symbolic

Programming

Spring 2007 Nate Titterton
nate@berkeley.edu

Lecture 2:
Introduction, and Conditionals

Announcements

• Nate's office hours:
- Wednesday, 2 - 4
- 329 Soda

• I'm not hearing about any book or reader
supply problems. Yes?

• Any questions about the course?
- Card keys?
- Working from home? (check the resources page)

Schedule

Lecture: Data abstraction in DbD
Lab: Miniproject 1

Feb 5-94

Lecture: Conditionals, Case Studies
Reading: "Difference between Dates" case

 study, in the reader
Lab: Explore "Difference between Dates"

Jan 29-Feb 33

Lecture: Introduction, Review, Conditionals
Reading: Simply Scheme, ch. 3-6
Lab: (1) Conditionals and booleans
 (2) Words/sentences and conditionals
Note: this is a "full" week.

Jan 22-262

Lecture: <holiday>
Lab: (1) Introduction, emacs, unix
 (2) Words and sentences

Jan 15-191

How are the labs?

Are you keeping up?
Is the SchemeHandler completely useless, or

just mostly useless?

Lab: a look back at day 1
1. Evaluation: from the inside out

(+ (* 2 (/ 4 2)) (* (+ 12 1) 2))
2. How to define functions

(1) define, (2) procedure name, (3) parameters, (4) body
3. The scheme machine (pictures)
4. sales-tax, discount-price,

 selling-price
5. Which single character has changed (to get an

unbound error?
(define (square x)

 (* x x))
6. mystery procedure

(define (mystery x)
 (square (+ 1 (truncate (sqrt (- x 1))))))

7. Write french revolutionary date

Terminology (from lab-session 1)

• argument
• body
• expression
• evaluation
• input
• placeholder
• procedure
• result

> (define (prepend-joe name)
 (word 'joe name))
prepend-joe
> (prepend-joe 'bob)
joebob
> (prepend-joe (word 'j 'o 'e))
joejoe

Lab: a look back at day 2
1. Procedures that take words & sentences

first, last, butfirst, butlast
2. Quoting!

- names versus things that are named
3. Constructing words & sentences

with word and sentence (se)
4. Add parens and quotes to get (def ghi)

butfirst sentence abc word def ghi
5. experiment with appearances
6. Evaluation rules with quotes
7. Packaging information with sentences

(inch-count '(2 3))  27
(FR-date 31)  (2 1)

8. Some common misconceptions

Quoting

• Quoting something means treating it
literally:
- you are interested in the specific thing follows,

rather than what is named
- Quoting is a shortcut to putting literal things

right in your code. As your programs get bigger,
you will do this less and less.

Quoting is something unique to Scheme
(and similar languages)

Some programming

• “first-two-letters”
- takes a word, returns the first two letters (as a

two-letter word)

• “two-first-letters”
- takes a sentence of two words, returns the first

letter of each (as a two-letter word)

A big idea

• Data abstraction

- Constructors: procedures to make a piece of
data
-word and sentence

- Selectors: procedures to return parts of that data
piece
-first, butfirst, etc.

Coming up: conditionals

• Conditionals allow programs to do different
things depending on data values

- To make decisions

• "Intelligence" depends on this
- it is hard to imagine any interesting program that

doesn't do different things depending on what it
is given

Structure of conditionals

(if <true?> ;; test
 <do something> ;; action (if true)
 <do something else>) ;; action (if false)

(define (smarty x)
 (if (odd? x)
 (se x '(is odd))
 (se x '(is even)))
)

true? or false?

• We need Booleans: something that represents
truth or 'not truth' to the computer:
 #t, #f

 (odd? 3)  #t

- in practice, everything is true except #f
 (if 'joe '(hi joe) '(who are you))
  (hi joe)

- false (the word with 5 letters) is true!
(really, false is #t)

Predicates

• Predicates are procedures that return
#t or #f

- by convention, their names end with a "?"

odd? (odd? 3)  #t
even? (even? 3)  #f
vowel? (vowel? 'a)  #t

(vowel? (first 'fred))  #f
sentence? (sentence? 'fred)  #f

cond is another conditional form

(cond
 (test-1 return-if-test1-true)
 (test-2 return-if-test2-true)
 ...
 (else return-if-no-other-test-is-true)
))

and, or and not to modify booleans

•and takes any number of arguments, and
returns true only if all are true
•or takes any number of arguments, and

returns true if any are true
•not takes a single argument, and returns

true only if the argument is false.

(if (not (and #t #t #t #f))
 'yes
 'awwwww)  yes

testing

There is much more to programming than
writing code

- Testing is crucial, and an emphasis of this
course

- Analysis
- Debugging
- Maintenance.
- "Design"

- How do you test a conditional?

