
1

Part III: A solution using higher-order procedures

The reader should have experience with the use of every, keep, and
accumulate.

Yet another approach to computing the difference
between dates
What are the drawbacks of the
first solution?

The earlier solution to the difference-between-
dates problem can be difficult to debug because
there is no easy way to check the correctness of the
procedure that returns the number of days
preceding a given month other than by repeating
the computation by which we determined it in the
first place:

(define (days-preceding month)
(cond

((equal? month 'january) 0)
((equal? month 'february) 31)
((equal? month 'march) 59)
((equal? month 'april) 90)
((equal? month 'may) 120)
((equal? month 'june) 151)
((equal? month 'july) 181)
((equal? month 'august) 212)
((equal? month 'september) 243)
((equal? month 'october) 273)
((equal? month 'november) 304)
((equal? month 'december) 334)))

One addition error, for instance, might invalidate
the result values for all subsequent months.

Stop and consider ËThe month-number and days-in-month procedures are
almost identical to the days-preceding procedure.
Why are they easier to verify as correct?

We would like to replace this procedure by a
computation that reflects the procedure we used to
compute the value by hand, which applies the same
process to all the months. This would significantly
reduce the chance of an accidental error in the
computation for a single month. The computation
should begin with the days-in-month values, since
most people can quickly verify that these values are
correct.

How can higher-order procedures
help?

This process of adding up values for a collection
of months suggests using higher-order procedures,
which take a sentence or word as an argument and
apply a procedure to all of its elements in a single
operation.

For instance, the adding up of days in the vari-
ous months suggests accumulation with the accumu-
late procedure. Given an argument representing the
days in a sequence of months, we could use accumu-

2

late with + to compute the number of days in all the
months. Thus one might find the number of days
preceding June by accumulating the procedure +
over the list of days in the months January through
May, i.e. (31!28!31!30!31).

We might then replace the cond in days-
preceding by the following code:

(cond
((equal? month 'january)

(accumulate + '()))
((equal? month 'february)

(accumulate + '(31)))
((equal? month 'march)

(accumulate + '(31 28)))
((equal? month 'april)

(accumulate + '(31 28 31)))
...)

This solution is not much of an improvement. It
requires lots of code, which is likely to contain at
least a typing error if not worse.

How might a twelve-way test be
replaced by a more general
computation?

A procedure to create the list over which to
accumulate the sum would be better. We’ll call this
procedure preceding-months-lengths. Then a twelve-
way cond would not be necessary; a simple expres-
sion like

(accumulate +
(preceding-months-lengths month))

would suffice. For example, given the month April,
preceding-months-lengths would return the month
lengths of the preceding months, (31 28 31). In
general, preceding-months-lengths would return the
following:

month returned result
january ()
february (31)
march (31 28)
april (31 28 31)
may (31 28 31 30)
june (31 28 31 30 31)
july (31 28 31 30 31 30)
august (31 28 31 30 31 30 31)
september (31 28 31 30 31 30 31 31)
october (31 28 31 30 31 30 31 31 30)
november (31 28 31 30 31 30 31 31 30 31)
december (31 28 31 30 31 30 31 31 30 31 30)

3

How is preceding-months-
lengths designed?

Design of preceding-months-lengths will involve
both reasoning backward from what preceding-
months-lengths should return, and reasoning from
what we already have. For instance, we can easily
construct the sentence
(january!february!…!december) of all the months for
preceding-months-lengths to work with. Two
approaches for using this sentence are the following:

• From the sentence containing all the month
names, produce the sentence containing only the
names of months that precede the given month.
From that smaller sentence, produce the
sentence containing the lengths in days of those
months.

• From the sentence containing all the month
names, produce the sentence containing the
lengths in days of those months, i.e. (31!28!31
… 30!31). From that sentence, produce the
sentence containing the lengths in days of the
relevant months, i.e. those that precede the
given month.

Stop and predict ËExplain which higher-order procedures will be needed
to produce each of the sentences just described, and
how they will be used.

4

Which higher-order procedures are
used in preceding-months-lengths?

Each of the approaches just described involves
translation of a sentence of month names to a sentence
of month lengths, along with shrinking a sentence of
information (names or lengths) of all months to a
sentence of information only for relevant months. The
translation is done with every, using the days-in-month
procedure as argument, and the shrinking with keep.
We now must determine which order to apply these
higher-order procedures: every first, or keep first.

Is keep applied to the result of
every, or vice-versa?

An excellent aid for choosing between the two
approaches is a data-flow diagram, in which the
successive transformations of sentences are accom-
panied with the procedures that perform those trans-
formations. The two diagrams representing the (every
… (keep …)) option and the (keep … (every …)) option
for the months preceding June appear below.

keep with ?

june

every with days-in-month

(january february … november december)

(january february march april may)

(31 28 31 30 31)

keep with ?

june

every with days-in-month

(january february … november december)

(31 28 31 30 31 30 31 31 30 31 30 31)

(31 28 31 30 31)
the (every … (keep …)) option:
applying keep first, then every

the (keep … (every …)) option:
applying every first, then keep

The (keep … (every …)) option would apply keep
to the sentence (31!28!31!30!31!30 31!31 30 31 30
31). The problem here is that keep tests each word
in its argument sentence in isolation from all the
other words in the sentence. It will not be able, for
instance, to return all words in the sentence up to or
after a given position, since such a test would
require information about the relation of words in
the sentence (i.e. where they appear relative to one
another). Thus keep will not be appropriate for
shrinking the sentence of month lengths.

Stop and consider ËExplain in your own words why the (keep … (every …
)) option won’t work.

5

We move to the (every … (keep …)) option,
applying keep before the month names are removed.
Here’s the rearranged code:

(define (preceding-months-lengths month)
(every

days-in-month
(keep

'(january february … december))))

What procedure is used with
keep to shrink the list of months?

So, which months are to be kept? It helps to
create another table that shows the result returned
by keep:

month returned result from keep
january ()
february (january)
march (january february)
april (january february march)

...
The months to be retained are those that precede
the month specified. Thus a procedure that
determines if one month precedes another is needed.

In part I of this case study, we defined a
procedure consecutive-months? that determined if
two months were adjacent. Design of this procedure
applied the technique of converting the arguments to
values that were easy to compare.

(define (consecutive-months? date1 date2)
(=

(month-number (month-name date2))
(+ 1 (month-number (month-name date1)))))

A similar approach can be used here:

; Return true if month1 precedes month2.
(define (month-precedes? month1 month2)

(<
(month-number month1)
(month-number month2)))

(The “dead end” solution in the first version has
yielded a procedure we could use again. It was not
such a dead end after all!)

6

How is month-precedes?
adapted for use with keep?

There is a problem here. Month-precedes? takes
two arguments, while keep’s procedure argument
takes only one argument of its own. What we really
need is a version of month-precedes? with the second
month held constant. It would fit into the code we’ve
already designed as follows:

; Return a sentence of days in months
; preceding the given month.

(define (preceding-months-lengths month)
(every days-in-month

(keep
procedure that applies month-precedes?
with the second month held constant
'(january february … december))))

The lambda special form provides a way to
construct the desired procedure. Used inside
preceding-months-lengths, the procedure

(lambda (month2)
(month-precedes? month2 month))

is exactly what is needed.

Stop and consider ËWhat error message will be produced if a procedure
earlier-than-month? is defined as given above, outside
the preceding-months-lengths procedure?

The higher-order procedure version of the days-
spanned-by procedure appears in Appendix D.

Stop and help ËDevise test data and test the program in Appendix D.

How can higher-order
procedures enable progress on
the dead-end approach?

An approach like the one just used can help us
complete the code we gave up in part I. Recall the
approach there of separating the computation into
three situations:

1. two dates in the same month (handled
successfully);

2. two dates in consecutive months (also handled
successfully);

3. two dates in months further apart (not handled).

We had devised a procedure for handling the third
case by hand, namely computing the sum of three
quantities:

the number of days remaining in the month
of the first given date;

the number of days in all the months
between the two given dates; and

the date-in-month of the second date.

Previously, we had been unable to determine the
number of days in all the months between the two
given dates in a reasonable way. Higher-order
procedures provide the tools for doing this.

7

We just designed a procedure that, given a
month, returns a sentence of the days in the
preceding months. This procedure can be used as
the basis for another procedure that, given two
months, returns a sentence of the days in all the
months in between. We’ll call it between-months-
lengths, to reflect the similarity with preceding-
months-lengths:

; Return a sentence of days in months between the two
; given months (not including those months).

(define (between-months-lengths earlier-month later-month)
(every days-in-month

(keep
(lambda (month)

(and
(month-precedes? earlier-month month)
(month-precedes? month later-month)))

'(january february … december))))

A data-flow diagram appears below that displays how
this procedure works given the arguments march and
july.

keep

july

every

(january february … november december)

(april may june)

(30 31 30)

march

Between-months-length can then be used to code
general-span:

(define (general-day-span earlier-date later-date)
(+

(days-remaining earlier-date)
(accumulate

+
(between-month-lengths

(month-name earlier-date)
(month-name later-date)))

(date-in-month later-date)))

The resulting code appears in Appendix E.

8

Appendix D—A version of days-spanned-by that uses higher-order
procedures

;; Access procedures for the components of a date.
(define (month-name date) (first date))
(define (date-in-month date) (first (butfirst date)))

(define (month-number month)
(cond

((equal? month 'january) 1)
((equal? month 'february) 2)
((equal? month 'march) 3)
((equal? month 'april) 4)
((equal? month 'may) 5)
((equal? month 'june) 6)
((equal? month 'july) 7)
((equal? month 'august) 8)
((equal? month 'september) 9)
((equal? month 'october) 10)
((equal? month 'november) 11)
((equal? month 'december) 12)))

;; Return the number of days in the month named month.
(define (days-in-month month)

(item
(month-number month)
'(31 28 31 30 31 30 31 31 30 31 30 31)))

;; Return true when month1 precedes month2, and false otherwise.
(define (month-precedes? month1 month2)

(< (month-number month1) (month-number month2)))

;; Return a sentence containing the lengths of months that precede
;; the given month.
(define (preceding-months-lengths month)

(every
days-in-month
(keep

(lambda (month2) (month-precedes? month2 month))
'(january february march april may june
 july august september october november december))))

;; Return the number of days from January 1 to the first day
;; of the month named month.
(define (days-preceding month)

(accumulate + (preceding-months-lengths month)))

;; Return the number of days from January 1 to the given date, inclusive.
;; Date represents a date in 1994.
(define (day-of-year date)

(+ (days-preceding (month-name date)) (date-in-month date)))

;; Return the difference in days between earlier-date and later-date.
;; Earlier-date and later-date both represent dates in 1994,
;; with earlier-date being the earlier of the two.
(define (day-span earlier-date later-date)

(+ 1 (- (day-of-year later-date) (day-of-year earlier-date))))

9

Appendix E—A modified version of the “dead-end” code from Part I
;; Return the difference in days between earlier-date and later-date.
;; Earlier-date and later-date both represent dates in a non-leap year,
;; with earlier-date being the earlier of the two.
(define (day-span earlier-date later-date)

(cond
((same-month? earlier-date later-date)
 (same-month-span earlier-date later-date))
((consecutive-months? earlier-date later-date)
 (consec-months-span earlier-date later-date))
(else
 (general-day-span earlier-date later-date))))

;; Access procedures for the components of a date.
(define (month-name date) (first date))
(define (date-in-month date) (first (butfirst date)))

;; Return true if date1 and date2 are dates in the same month, and
;; false otherwise. Date1 and date2 both represent dates in a non-leap year.
(define (same-month? date1 date2)

(equal? (month-name date1) (month-name date2)))

;; Return the number of the month with the given name.
(define (month-number month)

(cond
((equal? month 'january) 1)
((equal? month 'february) 2)
((equal? month 'march) 3)
((equal? month 'april) 4)
((equal? month 'may) 5)
((equal? month 'june) 6)
((equal? month 'july) 7)
((equal? month 'august) 8)
((equal? month 'september) 9)
((equal? month 'october) 10)
((equal? month 'november) 11)
((equal? month 'december) 12)))

;; Return the difference in days between earlier-date and later-date,
;; which both represent dates in the same month of a non-leap year.
(define (same-month-span earlier-date later-date)

(+ 1
(- (date-in-month later-date) (date-in-month earlier-date))))

;; Return true if date1 is in the month that immediately precedes the
;; month date2 is in, and false otherwise.
;; Date1 and date2 both represent dates in a non-leap year.
(define (consecutive-months? date1 date2)

(=
(month-number (month-name date2))
(+ 1 (month-number (month-name date1)))))

;; Return the difference in days between earlier-date and later-date,
;; which represent dates in consecutive months of a non-leap year.
(define (consec-months-span earlier-date later-date)

(+ (days-remaining earlier-date) (date-in-month later-date)))

;; Return the number of days in the month named month.
(define (days-in-month month)

(item
(month-number month)
'(31 28 31 30 31 30 31 31 30 31 30 31)))

10

;; Return the number of days remaining in the month of the given date,
;; including the current day. date represents a date in a non-leap year.
(define (days-remaining date)

(+ 1 (- (days-in-month (month-name date)) (date-in-month date))))

;; Return true when month1 precedes month2, and false otherwise.
(define (month-precedes? month1 month2)

(< (month-number month1) (month-number month2)))

;; Return a sentence of lengths of months between the two given months
;; (not including those months).
(define (between-month-lengths earlier-month later-month)

(every
days-in-month
(keep

(lambda (month)
(and

(month-precedes? earlier-month month)
(month-precedes? month later-month)))

'(january february march april may june
july august september october november december))))

;; Return the difference in days between earlier-date and later-date,
;; which represent dates in consecutive months of a non-leap year.
;; This is just the number of days remaining in the earlier month
;; plus the date in month of the later month plus the number of days
;; in all the months in between.
(define (general-day-span earlier-date later-date)

(+
(days-remaining earlier-date)
(accumulate

+
(between-month-lengths

(month-name earlier-date)
(month-name later-date)))

(date-in-month later-date)))

