

CS 3 (Clancy) Solutions and grading standards for exam 1
Spring 2004

1

Exam information

89 students took the exam. Scores ranged from 5 to 30, with a median of 23 and an
average of just over 22. There were 52 scores between 23 and 30, 24 between 16 and
22, 11 between 8 and 15, and 2 between 5 and 7. (Were you to receive a grade of 23 on
both your midterm exams, 46 on the final exam, plus good grades on homework and
quizzes, you would receive an A–; similarly, a test grade of 16 may be projected to a
B–.)

There were two versions of the exam, A and B. (The version indicator appears at the
bottom of the first page.)

If you think we made a mistake in grading your exam, describe the mistake in writ-
ing and hand the description with the exam to your lab t.a. or to Mike Clancy. We
will regrade the entire exam (even if the only error is a mistake in adding up your
points).

Solutions and grading standards

Problem 0 (2 points)

You lost 1 point on this problem for each of the following:

• you earned some credit on a problem and did not put your name on the page,

• you failed to indicate who you were sitting next to, or

• you did not indicate your lab section or t.a.

The reason for this apparent harshness is that exams can get misplaced or come
unstapled, and we would like to make sure that every page is identifiable. We also
need to know where you will expect to get your exam returned. Finally, it is some-
times useful to know where particular students were sitting.

Problem 1 (6 points)

Part a in each version involved adding parentheses and quotes to produce a given
value, while in part b you “played interpreter”. The part a problems and solutions are
given below.

This part was worth 2 points. 1 point was deducted for each error. Most of you got
this right.

Version A Version B

butfirst word last abc butfirst word first xyz

(butfirst (word 'last 'xyz)) (butfirst (word 'first 'xyz))

CS 3 (Clancy) Solutions and grading standards for exam 1
Spring 2004

2

In part b, you had to evaluate expressions involving

sentence

 and

butfirst

. Version
A’s expressions were the following:

Version B’s expressions were similar, in a slightly different sequence.

This part was worth 4 points. Again, 1 point was deducted per error. You weren’t
docked twice for making an error in one of the

butfirst

 calls and then repeating it
when evaluating the

sentence

 expression.

By far, the most common error in this problem was to neglect to include the empty
word in the resulting sentence.

Problem 2 (4 points)

For this problem, you were to describe all arguments for which the appropriate pro-
cedure below would not crash, and also describe what the procedure returns for an
argument that doesn’t cause it to crash.

Both procedures require a sentence of two or more words as an argument. Let’s look
at version A. The expression

(last (butlast x))

 returns the next-to-last word in a sen-
tence or character in a word, but crashes if its argument is empty or contains only
one word or character. Now suppose that

x

 is a word. Then

(last (butlast x))

 is a char-
acter,

butfirst

 of that character is the empty word, and

first

 crashes.

Now suppose

x

 is a sentence with at least two words. From

(last (butlast x))

 we get
the next-to-last word. That word must contain at least two characters for

(first (but-
first ...))

 not to crash, for the same reason that

x

 had to contain at least two words.

expression value explanation

(butfirst '(gh)) ()

(the empty sentence)

(gh)

 is a one-word sentence;
removing the first word leaves
the empty sentence.

(butfirst 'x) ""

(the empty word)

x

 is a one-character word;
removing the first word leaves
the empty word.

(butfirst 'yz) z

yz

 is a two-character word;
removing the first character
leaves the second.

(sentence 'ab '(cd ef)
(butfirst '(gh))
(butfirst 'x)
(butfirst 'yz))

(ab cd ef "" z)

The

sentence

 procedure ignores
arguments that are empty
sentences. However, an empty
word argument is included in
the result sentence.

Version A Version B

(define (mystery x)
(first (butfirst

(last (butlast x)))))

(define (mystery x)
(last (butlast

(first (butfirst x)))))

CS 3 (Clancy) Solutions and grading standards for exam 1
Spring 2004

3

Thus

x

 has to be a sentence with at least two words, whose next-to-last word con-
tains at least two characters.

(mystery x)

 then returns the second character in the
next-to-last word of

x

.

Reasoning for version B’s

mystery

 is similar. It returns the next-to-last character in
the second word of its argument, which must be a sentence with at least two words,
whose second word contains at least two characters.

A description of the legal

x

 values was worth 2 points, as was a description of the
return value. Generally, you lost 1 point for an incomplete answer (e.g. “

x

 must be a
three-word sentence”) and 2 points for an answer that included values for which

mys-
tery

 would crash. Another way to interpret deductions is that missing any of the fol-
lowing lost you 1 point:

•

x

 is a sentence that has at least two words;

• the second/next-to-last word in

x

 has at least two characters;

• the value returned is the second/next-to-last character ...

• in the next-to-last/second word of

x

.

The most common error on this problem was neglecting to specify that the second/
next-to-last word had to contain two characters. It lost 1 point. Some of you
attempted to echo the Scheme, saying something like “first you take the

butfirst

, then
the

first

 of that, then the

butlast

 of that, and then the

first

 of that, and that’s what

mystery

 returns.” This answer earned 0 points.

Problem 3 (10 points)

Here, you were to write a procedure that translates a day of the year (between 1 and
365) into a date in the format accepted by the

day-span

 code. This problem was the
same on both versions. Here are two solutions:

(define (2003-date day-of-year)
(sentence

(number->name (2003-month-number day-of-year))
(- day-of-year

(days-preceding
(number->name (2003-month-number day-of-year))))))

(define (number->name month-number)
(item month-number '(january february ... december)))

(define (2003-date day-of-year)
(sentence

(to-name day-of-year)
(- day-of-year (days-preceding (to-name day-of-year)))))

(define (to-name day-of-year)
(item

(2003-month-number day-of-year)
'(january february ... december)))

CS 3 (Clancy) Solutions and grading standards for exam 1
Spring 2004

4

Five features of your solution were evaluated.

a. construction of a two-element sentence;

b. computing the date in the month correctly;

c. using the

days-preceding

 procedure from the case study code to do this computa-
tion (you were told to use procedures from the case study code wherever appropri-
ate);

d. conversion of a number to a month name;

e. avoiding the use of

cond

 in doing this conversion.

For each feature, you received 2 points for doing it perfectly, 1 point for doing it
imperfectly, and 0 points for doing it badly or at all. Typical errors were as follows.

• Not using

sentence

 lost 2 points. Calling

sentence

 with a wrong argument type,
for example by specifying only a procedure name, lost 1 point; doing this for both
arguments lost you 2 points.

• Some students tried to use

remainder

 to find the day of the month, apparently
confusing dates in the Gregorian calendar with dates in the Islamic calendar.
This error usually lost 4 points, 2 for feature b and 2 for feature c.

• Some students lost 2 points for feature c by inventing their own

days-preceding

procedure rather than using the one in the case study code. Many of you forgot
that

days-preceding

 takes a month name as argument; forgetting the call to

2003-
month-number

 lost 1 point here. If you provided a procedure to translate numbers
to month names but neglected to call it here, you also lost 1 point.

• People who lost the 2 points for feature d typically either didn’t provide a number-
to-name translation procedure, or provided an expression that looked exactly like
a

cond

 except for using

and

 or

or

 instead of the word

cond

. (It’s possible to do this
successfully, but none of you did.) Another way to lose these 2 points was to use
the

name-of

 procedure from part 2 of the “Difference Between Dates” case study
(you were only allowed to use the code from part 1).

• Many solutions used

cond

 to compute a month name, thereby losing these 2
points. Rewriting the

month-number

 procedure from the case study didn’t earn
you any credit here. Other errors, each worth a 1-point deduction, were to reverse
the arguments to

item

, to have an off-by-one argument to

item

, and to quote
month names within a list.

Misparenthesizing somewhere cost you 1 point. Providing your own incorrect imple-
mentation of

2003-month-number

 lost you 2 points.

CS 3 (Clancy) Solutions and grading standards for exam 1
Spring 2004

5

Problem 4 (8 points)

This problem was to provide two implementations of an

is-special-day?

 procedure,
one not using

if

 or

cond

, the other not using

and

 or

or

. Both your implementations
had to avoid redundant uses of =,

equal?

, and

member?

. Moreover, you were not
allowed to make any assumptions about the format of a date. The two exam versions
differed only in the dates; the solutions below are for version A, in which the special
dates were March 11, April 2, and April 27.

Here are some full-credit implementations. Solutions with four or fewer uses of =

,
equal?

, or

member?

 could earn full credit.

A procedure without

and

 or

or

, with four uses of =, equal?, and member?:
(define (is-special-day? date)

(cond
((equal? (month-name date) 'march)
 (= (date-in-month date) 11))
((equal? (month-name date) 'april)
 (member? (date-in-month date) '(2 27)))
(else #f))

A procedure without if or cond, again with four uses of =, equal?, and member?:
(define (is-special-day? date)

(or
(and

(equal? (month-name date) 'march)
(= (date-in-month date) 11))

(and
(equal? (month-name date) 'april)
(member? (date-in-month date) '(2 27))))

Implementations with only three uses of =, equal?, and member?:
(define (is-special-day? date)

(cond
((equal? (se (month-name date) (date-in-month date)) '(march 11))
 #t)
((equal? (se (month-name date) (date-in-month date)) '(april 2))
 #t)
((equal? (se (month-name date) (date-in-month date)) '(april 27))
 #t)
(else #f)))

(define (is-special-day? date)
(or

((equal? (se (month-name date) (date-in-month date)) '(march 11))
((equal? (se (month-name date) (date-in-month date)) '(april 2))
((equal? (se (month-name date) (date-in-month date)) '(april 27))

))

CS 3 (Clancy) Solutions and grading standards for exam 1
Spring 2004

6

Each implementation was worth 4 points. A solution that correctly identified special
days earned you at least 2 points. Deductions for such a solution were as follows:

• 1 point for using two calls to = instead of one call to member? (this was quite com-
mon, and most people lost this point twice);

• 2 points for a redundant comparison, that is, re-testing a condition that had been
earlier ruled out.

If you made both those errors, you lost 3 points.

The following solutions were categorized as incorrect, and lost 3 points:

• a solution with small logic errors;

• a solution that depended on a particular date representation rather than using
month-name and date-in-month.

The latter solution occurred frequently. It received a relatively large deduction
because it would fail completely for dates represented in a single word, e.g. may31.

Another error that appeared occasionally involved a misunderstanding of or:
(equal? date (or '(march 11) '(april 2) '(april 27)))

This was a serious logic error. In addition, you may have lost 1 point for misquoting,
bad cond syntax, or misparenthesization.

Incidentally, an implementation that uses neither if or cond or and or or (and which
thus could be used for both parts) is

(define (special-day? date)
(member?

(word (month-name date) (date-in-month date))
'(march11 april2 april27)))

