
CS3:
Introduction to Symbolic

Programming

Fall 2007 Nate Titterton
nate@berkeley.edu

Lecture 15:
Summary, Exam problems

Announcements
• The FINAL

- Tuesday, Dec 18, 8:30-10:30am
- 105 Stanley
- Questions will be asked on everything

- With the main emphasis on later material (lists).
- Only 2 hours worth of material – 25% more fattening

than a midterm
- Review session

- Sunday, Dec 16, 2-4pm, 306 Soda

• Don’t forget about the final survey

- This will be worth 1 course point…
- Your answers won't factor into your grade.

How are you going to study
for the Final?

So, what have we done in CS3?
• Consider the handout of topics

- Common topics
- Pre-recursion
- Recursion
- Higher order procedures
- Lists
- Case studies
- Working with large programs

Another list…

٢. Functional programming
٣. Functions as data
٤. Recursion
٥. Abstraction
٦. Managing large programs

(1) Functional Programming

• All that can matter to a procedure is what it
returns.

• Small functions can be easily tested (isolated)
• In other languages, you typically:

- Perform several actions in a sequence
- Set the value of a global or local variable.
- Print, write files, draw pictures, connect to the internet,

etc.
• Other "paradigms“ include: sequential, object-

oriented, event-driven, declarative

(2) Functions as data

• Higher order procedures take functions as
parameters.

• It is useful to return functions at times

• lambda is quite useful, and sometimes
necessary.

(3) Recursion

• Linear (simple) to quite advanced
- They all have base and recursive cases in a

conditional
- Thinking about “inner” recursive calls as

possible solutions in their own right can help.

• In contrast to iteration and looping (where
counters or state define looping
constraints)
- Knowledge of recursion will help these simpler

cases.

(4) Abstraction

• The big idea that is related to everything!

• A design practice that makes it possible to
carve up a problem, and therefore focus on
only part of it.
- Makes working collaboratively more efficient

(5) Managing large programs

• Style: commenting, naming conventions,
etc.

• Abstraction: for maintenance and
collaboration

• Iterative testing
• Reading the specifications, and

communicating often with colleagues

