CS3: Introduction to Symbolic Programming

Lecture 13: Final Projects Lists (and trees)

Fall 2007

Nate Titterton nate@berkeley.edu

Schedule

12 Nov 12–16 Lecture: Holiday		Lecture: <i>Holiday</i> Lab: Advanced Lists, Sequential Programming
		Find partners for the Big Project
13	Nov 19–23	Lecture: Introduction to the Big Project Advanced Lists
		Lab: Work on the Big Project: checkoff #1
14	Nov 26–30	Lecture: Advanced Lists
		Scheme versus other languages
		Lab: Big Project: checkoff #2
15	Dec 3-7	Lecture: CS at Berkeley and outside
		Lab: Big Project: checkoff #3 and due
16	Dec 10	Lecture: Exam Review
		Labs: No thank you

Any questions about Midterm #2?

- 1) Replace
- 2) Word-swap
- 3) Election analyses
- 4) Longest-run
- 5) Maze (lead-to-exit?)

The Big Project

- Two possible projects:
 - Connect4
 - Blocks World
- You can, and should, work in partnerships
- You will have three weeks to work on this (it is due on the last lab)
- Worth 15% of your final grade

Project Check-offs

There are 3 checkoffs

You need to do them on time in order to get credit for the project

- 3. Tell your TA which project you will do and who you will do it with
- 4. Show your TA that you have accomplished something. S/he will comment.
- 5. Show that you have most of the work done: your TA will run your code.

Project Check-offs

There are 3 checkoffs

You need to do them on time in order to get credit for the project

- 3. Tell your TA which project you will do and who you will do it with
- 4. Show your TA that you have accomplished something. S/he will comment.
- 5. Show that you have most of the work done: your TA will run your code.

Due dates on the final project

Tues/Wed	Thur/Fri
(Nov 20/21)	(Nov 22/23)
Introduction	Thanksgiving
Checkoff #1	
(Nov 27/28)	(Nov 29/30)
Checkoff #2	
(Dec 4/5)	(Dec 7 th , Friday)
Checkoff #3	Due (at midnight)

Lets see the projects in action

What issues matter

- Does it work?
 - This is a primary grading standard...
- Programming style
- Data abstractions
- Reading specifications carefully
- Adequate testing

Working in partnerships

- Highly recommended!
 - For those of you continuing with CS, you'll be doing this for many future projects
- Won't be faster, necessarily
 - While you are less likely to get stuck, there will be a lot of communication necessary
- A big benefit will be with testing
- Remember, only one grade is given...
 - this grade will be the same, whether the project is a solo or a partnership

Data structures

- The format of data used in these projects in a central feature
 - A "data structure" (abstract data type) is a specification of that format. Here, generally, lists of lists (of lists).
 - Accessors and constructor allow for modularity: letting parts of a program work independently from other parts.

Functional Programming

- Both projects use sequential programming.
 - Drawing graphics,
 - printing, and
 - user input.
- You won't need to change these procedures, but understanding them will be helpful.