
CS3:
Introduction to Symbolic

Programming

Fall 2007 Nate Titterton
nate@berkeley.edu

Lecture 10:
Miniproject #3
Tree recursion

Midterm 2

Schedule

9 Oct 22-26 Lecture: Advanced HOF
Lab: Difference between Dates, Tic Tac Toe
 Miniproject #3 is introduced

10 Oct 29 –
Nov 2

Lecture: Tree Recursion, Midterm review
Lab: Tree recursions
 Finish Miniproject #3
 Be sure to finish the Survey
Reading: “Counting Change” case study

11 Nov 5–9 Lecture: Midterm #2
Lab: Introduction to Lists

12 Nov 12–16 Lecture: Lists, Sequential Programming
Lab: Advanced Lists, Sequential Programming
 Find partners for the Big Project

13 Nov 19–23 Lecture: Introduction to the Big Project
Lab: Work on the Big Project: checkoff #1

Midterm #2
• Next Week (Nov 5th)

- Next week, 90 minutes (4:10-5:40).
- Note: daylight savings time starts that week!
- Room Genetics and Plant Bio 100
- Open book, open notes, etc.
- Check for practice exams and solution on the

course portal and in the reader.

• Midterm 2 review session
- Saturday, 2-4 pm
- 306 Soda (as last time)

What does midterm #2 cover?

• Advanced recursion (accumulating, multiple
arguments, etc.).

• Tree-recursion (from this week)
• All of higher order functions
• Those "big" homeworks (bowling, compress, and

occurs-in)
• Elections and number-name miniprojects
• Reading and programs:

- Change making, Roman numerals
- Difference between dates #3 (HOF),
- Tic-tac-toe

• SS chapters 14, 15, 7, 8, 9, 10
• Everything before the first Midterm (although, this

won't be the focus of a question)

Testing in miniproject #3
• There is a bit of contradiction in the

instructions:
- Put all of your testing in winner-tests.scm,

rather than above each function in winner.scm
- You still need to test each helper procedure!

• Use “send region” in emacs to test many
things at once.

• Write some procedures to help you test…

The last of Advanced HOF

every containing every
• You can mimic 2-stage recursion, applying a

function to each letter of each word.

• You can get combinatoric effects:

(define (pair-all sent)
(every (lambda (one)

 (every (lambda (two)
 (word one two))
 sent))
 sent))

(pair-all '(a b c))  ???

every containing every containing…
(make-kindergarten-words '(s t) '(a o))
  (sas sat sos sot tas tat tos tot)
(make-kindergarten-words '(l n k t s) '(a e i o u))
  225 words!

(define (make-kindergarten-words consonants vowels)
 (every (lambda (c)
 (every (lambda (v)

 vowels))
 consonants))

Tree Recursion

What will happen?

• What will countem return for n=1, 2, …?

(define (countem n)
 (if (= n 0)
 '()
 (se (countem (- n 1))
 n
 (countem (- n 1)))))

Tree recursion

A recursive technique in which more than
one recursive call is made within a recursive
case.

Pascal's triangle

 columns (C)

r
o
w
s

(R)

0 1 2 3 4 5 ...

0 1 ...

1 1 1 ...

2 1 2 1 ...

3 1 3 3 1 ...

4 1 4 6 4 1 ...

5 1 5 10 10 5 1 ...

...

Pascal’s
Triangle

• How many ways can you choose C things from R choices?
• Coefficients of the (x+y)^R: look in row R
• etc.

(define (pascal C R)
 (cond
 ((= C 0) 1) ;base case
 ((= C R) 1) ;base case
 (else ;tree recurse
 (+ (pascal C (- R 1))
 (pascal (- C 1) (- R 1))
)))

> (pascal 2 5)

(+
(pascal 2 5)

(pascal 2 4)

(pascal 1 4)

(+

(+

(pascal 2 3)

(pascal 1 3)

(pascal 1 3)

(pascal 0 3)

(+ (pascal 2 2)
(pascal 1 2)

(pascal 1 2)
(pascal 0 2)

 1

(pascal 1 2)
(pascal 0 2)  1

 1

(+ (pascal 1 1)
(pascal 0 1)  1

 1

(+ (pascal 1 1)  1
(pascal 0 1)  1

 1
(+ (pascal 1 1)  1

(pascal 0 1)  1

Chips and Drinks

(snack 1 2)  3
- This includes (chip, drink, drink), (drink, chip,

drink), and (drink, drink, chip).
(snack 2 2)  6

- (c c d d), (c d c d), (c d d c)
(d c c d), (d c d c), (d d c c)

"I have some bags of chips and some drinks.
How many different ways can I finish all of
these snacks if I eat one at a time?

A variable number of recursive calls…
• Consider “Joe numbers”:

- The nth joe-number is the sum of all the joe-
numbers under it (i.e., joen-1 to joe1).

- Joe1 is simply 1.

• Write a procedure to calculate Joen.

- A procedure down-from that, given n, returns a
sentence of numbers from n to 1 should be
useful. And easy to write!

- (down-from 6)  (6 5 4 3 2 1)

Problems

binary

• Write binary, a procedure to generate the
possible binary numbers given n bits.

(binary 1)(0 1)
(binary 2)(00 01 10 11)
(binary 3)(000 001 010 011 100 101 110 111)

