
CS3:
Introduction to Symbolic

Programming

Fall 2007 Nate Titterton
nate@berkeley.edu

Lecture 9:
More HOF
tic-tac-toe

Schedule

8 Oct 15-19 Lecture: Higher Order Functions
Lab: Introduction to HOF, lambda
Reading: Simply Scheme, Ch 8, 9 (for Tue/Wed)
 Simply Scheme, Ch 7 (for Thur/Fri)

9 Oct 22-26 Lecture: Advanced HOF
Lab: Difference between Dates, Tic Tac Toe
 Miniproject #3 is introduced
Reading: “DbD” case study (HOF version)
 Simply Scheme, Ch 10

10 Oct 29 –
Nov 2

Lecture: Tree Recursion, Midterm review
Lab: Tree recursions
 Finish Miniproject #3

11 Nov 5 – 9 Lecture: Midterm #2
Lab: Introduction to Lists

Work on mini-project #3 in lab this week!

Tue/Wed Thur/Fri

This week Miniproject introduced,
 ½ lab to work on it

Next Week Full day of tree recursion!

A few review materials
introduced. Otherwise,
open lab
MP#3 due at end of lab.

 MIDTERM #2…

Tic Tac Toe

 X | |
---+---+---
 O | O | X
---+---+---
 | |

 "X _ _"

 "O O X"

 "_ _ _"

"X _ _ O O X _ _ _"

The board

 X | |
---+---+---
 O | O | X
---+---+---
 | |

"X _ _ O O X _ _ _"

Triples (another representation of a board)

()x23 oox 789 xo7 2o8 3x9 xo9 3o7

Tic-tac-toe hints

• Read the chapter!
• You will need to be familiar with vocabulary

- positions, triples, "forks", "pivots", and so on
• This chapter in the book comes before

recursion.
- You would solve things differently if you used

recursion
• The code (at the end of the chapter) has no

comments.

Higher-order functions: review

Higher order function (HOFs)
• A HOF is a procedure that takes a procedure

as an argument.
• There are three main ones that work with

words and sentences:

- every
- take a one-argument procedure that returns a word
- do something to each element

- keep
- takes a one-argument predicate
- return only certain elements

- accumulate
- takes a two-argument procedure
- combine the elements

A definition of every
(define (my-every proc ws)
 (if (empty? ws)
 '()
 (se (proc (first ws))
 (my-every (bf ws))
)))

• HOFs do a lot of work for you:
• Checking the conditional
• Returning the proper base case
• Combing the various recursive steps
• Invoking themselves recursively on the smaller

problem

Accumulate: right to left!

• The direction matters: right to left
- (accumulate / '(4 2 2))

does not equal 1, but 4.

• Think about expanding an accumulate

(accumulate + '(1 2 3 4))
 (+ 1 (+ 2 (+ 3 4)))

(accumulate / '(4 2 2))
 (/ 4 (/ 2 2))

Consider how accumulate is written…

(define (my-accum1 accum-proc sent)
 (if (= (count sent) 1) ;;last element

 (first sent)

 (accum-proc
 (first sent)
 (my-accum1 accum-proc (bf sent)))))

Accumulate: returning sentences

• accumulate can return a sentence…
(accumulate ?? '(a b c d))

 (ab bc cd)
- the first time accumulate is run, it reads the last

two words of the input sentence

- in later calls, it uses the return value of its
procedure (which is a sentence) as one of its
arguments

Any questions from Tue/Wed last week?
• You wrote and played with every, keep, and accumulate
• You used them in combination:

(remove-adj-dupls 'mississippi)
  misisipi
(gpa '(A A F C B))
  2.6 (average of 4, 4, 0, 2, 3)

(gpa-with-p/np '(A A F NP P C B))
  2.6 (average of 4, 4, 0, 2, 3)

(true-for-all? even? '(2 4 6 8))
  #t

Which HOFs would you use? (1/2)

1) capitalize-proper-names
(c-p-n '(mr. smith goes to washington))  (mr. Smith goes to Washington)

• count-if
(count-if odd? '(1 2 3 4 5))  3

• longest-word
(longest-word '(I had fun on spring break))  spring

• count-vowels-in-each
(c-e-l '(I have forgotten everything))

 (1 2 3 3)

Which HOFs would you use? (2/2)

1) squares-greater-than-100
(s-g-t-100 '(2 9 13 16 9 45))

 (169 256 2025)
• root of the sum-of-squares

(sos '(1 2 3 4 5 6 7))
 (sqrt (+ (* 1 1) (* 2 2) …)
 30

• successive-concatenation
(sc '(a b c d e))

 (a ab abc abcd abcde)

Any questions from Thur/Fri last week?

• You wrote and played with lambda and let

Three ways to define a variable
• In a procedure call (e.g., the variable

proc):
(define (doit proc value)

;; proc is a procedure here…
(proc value))

3. As a global variable
(define *alphabet* '(a b c d e …))
(define *month-name* '(january …))

• With let

the lambda form
• "lambda" is a special form that returns a

function:

(lambda (arg1 arg2 …)
statements
)

(lambda (x) (* x x))

 ➩ ➩ ➩ ➩ ➩
 a procedure that takes one argument and multiplies it by itself

Use lambda anywhere you need a function

(define square
 (lambda (x) (* x x)))

(every (lambda (x) (* x x))
 '(1 2 3))
  (1 4 9)

((lambda (x) (* x x)) 3)
  9

You need lambda when…
…you need a procedure to make reference to

more values than you can pass it.

For instance, when a procedure for use in an
every needs two parameters

(prepend-every 'sir- '(sam mary loin))
  (sir-sam sir-mary sir-loin)

Write prepend-every

Write appearances

make-bookends (a small problem)

• Write make-bookends, which is used this
way:

((make-bookends 'o) 'hi)  ohio

((make-bookends 'to) 'ron)  toronto

(define tom-proc (make-bookends 'tom))
(tom-proc "")  tomtom

Problems

Write successive-concatenation
(sc '(a b c d e))
 (a ab abc abcd abcde)
(sc '(the big red barn))
 (the thebig thebigred thebigredbarn)

(define (sc sent)
 (accumulate
 (lambda ??
)
 sent))

