
CS3:
Introduction to Symbolic

Programming

Fall 2007 Nate Titterton
nate@berkeley.edu

Lecture 8:
Introduction to HOF

Schedule

8 Oct 15-19 Lecture: Higher Order Functions
Lab: Introduction to HOF, lambda
Reading: Simply Scheme, Ch 8, 9 (for Tue/Wed)
 Simply Scheme, Ch 7 (for Thur/Fri)

9 Oct 22-26 Lecture: Advanced HOF
Lab: Difference between Dates, Tic Tac Toe
 Miniproject #3 is introduced
Reading: “DbD” case study (HOF version)
 Simply Scheme, Ch 10

10 Oct 29 –
Nov 2

Lecture: Tree Recursion, Midterm review
Lab: Tree recursions
 Finish Miniproject #3

11 Nov 5 – 9 Lecture: Midterm #2
Lab: Introduction to Lists

What is a
procedure?

(or, a function).

Treating functions as things
• “define” associates a name with a value

- The usual form associates a name with a object
that is a function

 (define (square x) (* x x))
 (define (pi) 3.1415926535)

- You can define other objects, though:
 (define *pi* 3.1415926535)
 (define *month-names*
 ‘(january february march april may
 june july august september
 october november december))

"Global variables"
• Functions are "global", in that they can be

used anywhere:
(define (pi) 3.1415926535)
(define (circle-area radius)

(* (pi) radius radius))

• A "global" variable, similarly, can be used
anywhere:

(define *pi* 3.1415926535)
(define (circle-area radius)

(* *pi* radius radius))

Consider two forms of “month-name”:

 (define (month-name1 date)
 (first date))

 (define month-name2 first)

Are these the same?

Procedures can be taken as arguments…

(define (math-function? func)
 (or (equal? func +)
 (equal? func -)
 (equal? func *)
 (equal? func /)))

…and procedures can be returned from procedures

(define (choose-func name)
 (cond ((equal? name 'plus) +)
 ((equal? name 'minus) -)
 ((equal? name 'divide) /)
 (else 'sorry)))

(define (make-add-to number)
 (lambda (x) (+ number x)))

(define joe (make-add-to 5))

Higher order function (HOFs)

• A HOF is a function that takes a function as
an argument.

(define (do-math f arg1 arg2)
 (if (and (equal? arg2 0)
 (equal? f /))
 '(uh oh – divide by zero)
 (f arg1 arg2)))

The three we will focus on

• There are three main ones that work with
words and sentences:

every do something to each element

keep return only certain elements

accumulate combine the elements

• Most recursive functions that operate
on a sentence fall into:

Mapping: square-all
Counting: count-vowels, count-evens
Finding: member, first-even
Filtering: keep-evens
Testing: all-even?
Combining: sum-evens

Patterns for simple recursions

<- every

<- keep

<- accumulate

defining variables, let, and lambda

Three ways to define a variable
• In a procedure call (e.g., the variable

proc):
(define (doit proc value)

;; proc is a procedure here…
(proc value))

3. As a global variable
(define *alphabet* '(a b c d e …))
(define *month-name* '(january …))

• With let

Using let to define temporary variables
• let lets you define variables within a

procedure:

(define (scramble-523 wd)
 (let ((second (first (bf wd)))
 (third (first (bf (bf wd))))
 (fifth (item 5 wd))
)
 (word fifth second third)))

(scramble-523 'meaty)  yea

Using let to define temporary variables
• Using let can make code more readable.

Consider (same functionality as before):

(define (scramble-523 wd)
 (word (first (bf wd))
 (first (bf (bf wd)))
 (item 5 wd)
)
)

(scramble-523 'meaty)  yea

(define pi 3.14159265)
(define (… blah …)
 … lots of code here …
 (* pi radius)
 … more code here …

(define (… blah …)
 (let ((pi 3.14159265)))
 … lots of code here …
 (* pi radius)
 … more code here …

Any differences?

alpha beta pi zeta)

alpha beta pi zeta)

YES!

Anonymous functions:

using lambda

the lambda form
• "lambda" is a special form that returns a

function:

(lambda (arg1 arg2 …)
statements
)

(lambda (x) (* x x))

 ➩ ➩ ➩ ➩ ➩
 a procedure that takes one argument and multiplies it by itself

Using lambda with define

• These are the same:

(define (square x)
 (* x x))

(define square
 (lambda (x) (* x x))
)

Using lambda with define

• These are VERY DIFFERENT:

(define (adder-1 y)
 (lambda (x) (+ x 1)))

(define adder-2
 (lambda (x) (+ x 1)))

(lambda (sent)
 (if (empty? sent)
 '()
 (se (square (first sent))
 (???? (bf sent)))))

Can a lambda-defined function be recursive?

When do you NEED lambda?
1. When you need the context (inside a two-

parameter procedure)

(add-suffix '-is-great '(haddad sam mary))
  (haddad-is-great sam-is-great
 mary-is-great)

• When you need to make a function on the
fly

