CS3:

Introduction to Symbolic
Programming

Lecture 5:
More Recursion
Midterm 1 review

Fall 2007 Nate Titterton
nate@berkeley.edu

Schedule

4 | Sep 17-21 Lecture: Data abstraction in DbD;

Introduction to recursion

orf
6 |Octl-4 Lecture: Midterm 1
Lab: Recursion with multiple arguments

Reading* Qimp]y Scheme ch. 14
7 | Oct8-12 Lecture: Advanced Recursion

Lab: Advanced Recursion

Mininraiect 2- | 1L

Announcements

* Nate's office hours (permanently):
- Wed, 2-4, 329 Soda

* Reading for this week

- “Difference between dates recursive version”, case
study in the reader. For lab Tue/Wed

- “Roman Numerals” case study in reader. For lab
Thur/Fri

* The last day to drop is Sept 28t

* Midterm is 90 minutes (4:10 — 5:40).
- Room TBA
- TA-led review session: Saturday, 3pm-5pm

All recursion procedures need...

1. Base Case (s)

Where the problem is simple enough to be solved
directly

2. Recursive Cases (s)
1. Divide the Problem

into one or more smaller problems

2. Invoke the function
Have it call itself recursively on each smaller part

3. Combine the solutions
Combine each subpart into a solution for the whole

Locate the "parts™

(define (find-evens sent)
(cond ((empty? sent)
())
((odd? (first sent))
(find-evens (bf sent)))
(else
(se (first sent)
(find-evens (bf sent))))

))

Base Case

Locate the "parts™

(define (find-evens sent)

(cond |((empty? sent)
'O)
((odd? (first sent))
(find-evens (bf sent)))
(else

(se (first sent)
(find-evens (bf sent))))

))

Base Case

Locate the "parts™

(define (find-evens sent)

(cond |((empty? sent)
'O)
((odd? (first sent))
(find-evens (bf sent)))

(else

(se (first sent)
(find-evens (bf sent))))

))

Base Case

Divide the problem

Locate the "parts™

(define (find-evens sent)

(cond |((empty? sent)
'O)

((odd? (first sent))

(find-evens |(bf sent)]))

(else
(se (first sent)
(find-evens

))

Base Case

Divide the problem

(bf sent)

Locate the "parts™

(define (find-evens sent)

(cond |((empty? sent)

())
((odd? (first sent))

(find-evens |(bf sent)]))

(else
(se (first sent)
(find-evens |(bf sent)|)))

))

Base Case Invoke the function
recursively

Divide the problem

Locate the "parts™

(define
(cond

Base Case

(find-evens sent)

((empty? sent)
'O)

))

((0dd? (first sent))

(find-evens |(bf sent))‘)

(else
(se (first sent)

find-evens

(bf sent)

HE

Invoke the function

recursively

Divide the problem

Locate the "parts™

(define (find-evens sent)

(cond |((empty? sent)

())
((0dd? (first sent))

(find-evens |(bf sent))‘)
(else

(se (first sent)
kfind—evens (bt sent)))‘)

))

Base Case Invoke the function
recursively

Divide the problem Combine the solutions

Locate the "parts™

(define (find-evens sent)

(cond |((empty? sent)

())
((0dd? (first sent))

(find-evens |(bf sent))‘)
(else

(se (first sent)
kfind—evens (bt sent)))‘)

Base Case Invoke the function
recursively

Divide the problem Combine the solutions

Another way to represent recursion

(define (count sent)
(Lf (empty? sent)
0
(+ 1 (count (bf sent)))

))

(define (count sent)
(Lf (empty? sent)
0
(+ 1 (count (bf sent)))

))

> (my-count '(a b c))

sent=(abc)

(+ 1 sent=(bc)

(+ 1

sent=(c)

(+ 1 sent=()

2 (+1 (+1 (+10)))

= 3

> (find-evens '(2 3 4 5 6

sent=(23456)

(se 2 sent=(3456)
sent=(456)
(se 4 sent=(56)
sent=(6)
(se 6 sent=()

()

> (se 2 (se 4 (se 6 ())))
> (2 4 6)

Lab materials (last week)

* "combining method" with
- downup,
- reverse,
- copies,
- sum-in-interval,
- appearances

Lab material (this week)

* Data abstraction and recursion
* The replacement modeler
* Work with recursive day-span
* Write

- down-to-0

- remove

- all-odd?

- dupls-removed

- 1s-sorted?
* Work with “roman numerals”

- grouped

Write sevens

* Write a procedure sevens that takes a
sentence of numbers, and replaces any pairs
of numbers that sum to seven with the
number 7.

> (sevens ‘(2 3 4 5 6)) =2 (2 7 5 6)
> (sevens ‘(3 4 3 2 5)) = (7 3 17)

> (sevens ‘(61 02 7 0 4)) =
(7 0 2 7 4)

Midterm 1: Oct 1¢* (next week)

- Location: TBA

Time: In the lecture slot, plus 40 minutes
(4:10-5:40)
If you have a conflict, you need to TALK TO ME.

Open book, open notes. Really.
Nothing that can compute, though
Everything we’ve covered, including this coming

week on recursion.

Yes, this include “roman numerals” you will look at on
Thur/Fri. At a general level, not in detail.

TA-led review session
Sat, Sept 29, 3-5 pm, 306 Soda
Practice exams in your reader

Do these all at once (to simulate an exam)
Solutions to be announced on Course Portal

Some midterm like problems

Whatever floats your boat (sp07 mt1) (1/3)

This problem involves a Rank | Explanation
pI’OCCdU.I’G can-— 5 5 Stalr admiral
order?, which takes % 3 siar admiral
two ranks 1n the United i 7 st admiral
States navy and returns ' .

#t if and only if the cpn| “”
first rank is “above” cmd_|commander
the second and can, ltn | fieutenant
therefore, order the en | ensign

other one around. The
following table lists
the ranks:

Whatever floats your boat (sp07 mt1): part A

Write can-order? in the form of the “better
solution” in the Difference Between Dates
case study (the second attempt that
successfully wrote day-span, after the dead
end was reached in the first attempt). You
can assume that the ranks passed to can-
order? are valid.

Chooose good names for your parameters
and helper procedures, and add relevant
comments above every procedure.

- Partial credit will be awarded for solutions that
don’'t follow the form of the better solution in
Difference Between Dates.

Whatever floats your boat (sp07 mt1): part B

There are man)(l possible valid calls to can-
order?. For this problem, you will write test
cases for the procedure.

- We don't want a large list. Instead, we want you
to describe what the general classes of tests
cases are.

- That is, think about how the test cases can be
grouped such that the cases in a group are
similar in how they check for errors or otherwise
test the program.

- There are not many groups.

For each group, briefly describe what the
similarity is and provide a single test case.
tBe ts.ure to include the correct result of the

est.

Midterm Problem: sub-cursion?

Write the procedure sub-sentence, which returns a middle
section of a sentence. It takes three parameters; the first
identifies the index to start the middle section, and will be 1 or
greater; the second identifies the length of the middle section,
and will be 0 or greater; and the last is the sentence to work
with.

Do not use any helper procedures.
Do not use the item procedure in your solution.

(sub-sentence 2 3 '(abcde f£fg)) 9 (b cd)
(sub-sentence 3 2 '(a b)) = ()
(sub-sentence 3 0 '(abcde) =2 ()
(sub-sentence 3 9 '(abcde) =P (cde)

