
CS3:
Introduction to Symbolic

Programming

Fall 2007 Nate Titterton
nate@berkeley.edu

Lecture 5:
More Recursion
Midterm 1 review

Schedule

Lecture: Advanced Recursion
Lab: Advanced Recursion
 Miniproject 2: Number spelling

Oct 8-127

Lecture: Midterm 1
Lab: Recursion with multiple arguments
Reading: Simply Scheme ch. 14

Oct 1-46

Lecture: Recursion
Lab: More complex recursion
Reading: “Dbd, recursive solution” case study
 (for Tue/Wed)
 “Roman Numerals” case study
 (for Thur/Fri)

Sep 24-285

Lecture: Data abstraction in DbD;
 Introduction to recursion
Lab: Miniproject I; begin recursion

Sep 17-214

Announcements
• Nate's office hours (permanently):

- Wed, 2-4, 329 Soda
• Reading for this week

- “Difference between dates recursive version”, case
study in the reader. For lab Tue/Wed

- “Roman Numerals” case study in reader. For lab
Thur/Fri

• The last day to drop is Sept 28th

• Midterm is 90 minutes (4:10 – 5:40).
- Room TBA
- TA-led review session: Saturday, 3pm-5pm

All recursion procedures need…

1. Base Case (s)
• Where the problem is simple enough to be solved

directly

2. Recursive Cases (s)
1. Divide the Problem

• into one or more smaller problems
2. Invoke the function

• Have it call itself recursively on each smaller part
3. Combine the solutions

• Combine each subpart into a solution for the whole

(define (find-evens sent)
 (cond ((empty? sent)
 '())
 ((odd? (first sent))
 (find-evens (bf sent)))
 (else
 (se (first sent)
 (find-evens (bf sent))))
))

Locate the "parts"

Base Case

(define (find-evens sent)
 (cond ((empty? sent)
 '())
 ((odd? (first sent))
 (find-evens (bf sent)))
 (else
 (se (first sent)
 (find-evens (bf sent))))
))

Locate the "parts"

Base Case

(define (find-evens sent)
 (cond ((empty? sent)
 '())
 ((odd? (first sent))
 (find-evens (bf sent)))
 (else
 (se (first sent)
 (find-evens (bf sent))))
))

Locate the "parts"

Base Case

Divide the problem

(define (find-evens sent)
 (cond ((empty? sent)
 '())
 ((odd? (first sent))
 (find-evens (bf sent)))
 (else
 (se (first sent)
 (find-evens (bf sent))))
))

Locate the "parts"

Base Case

Divide the problem

(define (find-evens sent)
 (cond ((empty? sent)
 '())
 ((odd? (first sent))
 (find-evens (bf sent)))
 (else
 (se (first sent)
 (find-evens (bf sent))))
))

Locate the "parts"

Base Case

Divide the problem

Invoke the function
recursively

(define (find-evens sent)
 (cond ((empty? sent)
 '())
 ((odd? (first sent))
 (find-evens (bf sent)))
 (else
 (se (first sent)
 (find-evens (bf sent))))
))

Locate the "parts"

Base Case

Divide the problem

Invoke the function
recursively

(define (find-evens sent)
 (cond ((empty? sent)
 '())
 ((odd? (first sent))
 (find-evens (bf sent)))
 (else
 (se (first sent)
 (find-evens (bf sent))))
))

Locate the "parts"

Base Case

Divide the problem Combine the solutions

Invoke the function
recursively

(define (find-evens sent)
 (cond ((empty? sent)
 '())
 ((odd? (first sent))
 (find-evens (bf sent)))
 (else
 (se (first sent)
 (find-evens (bf sent))))
))

Locate the "parts"

Base Case

Divide the problem Combine the solutions

Invoke the function
recursively

Another way to represent recursion

(define (count sent)
 (if (empty? sent)
 0
 (+ 1 (count (bf sent)))
))

> (my-count '(a b c))

 (+ 1 (+ 1 (+ 1 0)))

 3

(+ 1
(+ 1

(+ 1
0

sent = (a b c)

sent = (b c)

sent = (c)

sent = ()

(define (count sent)
 (if (empty? sent)
 0
 (+ 1 (count (bf sent)))
))

> (find-evens '(2 3 4 5 6))

 (se 2 (se 4 (se 6 ())))
 (2 4 6)

(se 2

(se 4
(se 6

()

sent = (2 3 4 5 6)

sent = (3 4 5 6)

sent = (4 5 6)

sent = (5 6)

sent = (6)

sent = ()

Lab materials (last week)

• "combining method" with
- downup,
- reverse,
- copies,
- sum-in-interval,
- appearances

Lab material (this week)
• Data abstraction and recursion
• The replacement modeler
• Work with recursive day-span
• Write

- down-to-0
- remove
- all-odd?
- dupls-removed
- is-sorted?

• Work with “roman numerals”
- grouped

Write sevens

• Write a procedure sevens that takes a
sentence of numbers, and replaces any pairs
of numbers that sum to seven with the
number 7.

> (sevens ‘(2 3 4 5 6))  (2 7 5 6)

> (sevens ‘(3 4 3 2 5))  (7 3 7)

> (sevens ‘(6 1 0 2 7 0 4)) 
 (7 0 2 7 4)

Midterm 1: Oct 1st (next week)
- Location: TBA
- Time: In the lecture slot, plus 40 minutes

- (4:10-5:40)
- If you have a conflict, you need to TALK TO ME.

- Open book, open notes. Really.
- Nothing that can compute, though

- Everything we’ve covered, including this coming
week on recursion.

- Yes, this include “roman numerals” you will look at on
Thur/Fri. At a general level, not in detail.

- TA-led review session
- Sat, Sept 29, 3-5 pm, 306 Soda

- Practice exams in your reader
- Do these all at once (to simulate an exam)
- Solutions to be announced on Course Portal

Some midterm like problems

Whatever floats your boat (sp07 mt1) (1/3)

This problem involves a
procedure can-
order?, which takes
two ranks in the United
States navy and returns
#t if and only if the
first rank is “above”
the second and can,
therefore, order the
other one around. The
following table lists
the ranks:

ensignen
lieutenantltn
commandercmd
captaincpn
1 star admiral1
3 star admiral3
5 star admiral5
ExplanationRank

Whatever floats your boat (sp07 mt1): part A

Write can-order? in the form of the “better
solution” in the Difference Between Dates
case study (the second attempt that
successfully wrote day-span, after the dead
end was reached in the first attempt). You
can assume that the ranks passed to can-
order? are valid.

Chooose good names for your parameters
and helper procedures, and add relevant
comments above every procedure.

- Partial credit will be awarded for solutions that
don't follow the form of the better solution in
Difference Between Dates.

Whatever floats your boat (sp07 mt1): part B

There are many possible valid calls to can-order?. For this problem, you will write test
cases for the procedure.

- We don't want a large list. Instead, we want you
to describe what the general classes of tests
cases are.

- That is, think about how the test cases can be
grouped, such that the cases in a group are
similar in how they check for errors or otherwise
test the program.

- There are not many groups.

For each group, briefly describe what the
similarity is and provide a single test case.
Be sure to include the correct result of the
test.

Midterm Problem: sub-cursion?
Write the procedure sub-sentence, which returns a middle
section of a sentence. It takes three parameters; the first
identifies the index to start the middle section, and will be 1 or
greater; the second identifies the length of the middle section,
and will be 0 or greater; and the last is the sentence to work
with.

Do not use any helper procedures.
Do not use the item procedure in your solution.

(sub-sentence 2 3 '(a b c d e f g))  (b c d)
(sub-sentence 3 2 '(a b))  ()
(sub-sentence 3 0 '(a b c d e)  ()
(sub-sentence 3 9 '(a b c d e)  (c d e)

