CS3:

Introduction to Symbolic
Programming

Lecture 5:
“DbD” and data abstraction;
Introduction to Recursion

Fall 2007 Nate Titterton
nate@berkeley.edu

Schedule

3 Sep 10-14

5 Sep 24-28

Lecture: Conditionals, Case Studies

Reading: "Difference between Dates" case
study, in the reader (first version)

Lab: Explore "Difference between Dates

Start miniproject 1

Lecture: Recursion
Lab: More complex recursion
Reading: “Dbd, recursive solution” case study

“Roman Numerals” case study

6 Oct 1-4

Lecture: Midterm 1
Lab: Advanced recursion

Announcements

* Nate's office hours (this week):
- Wed, 2-4, 329 Soda

* Reading for this week
- Simply Scheme, chapter 11
- You really need to do this before Lab on Thur/Fri

* Note: you need to take quizzes in the lab room

- You are allowed 4 quizzes taken while not in
attendance

* The last day to drop is Sept 28t
* Midterm 1 is in 2 weeks (Oct 1Y)

- It probably won’t be in this room

- 90 minutes long (4:10-5:40)

- Open book, open notes, no computers...

- There will be a review session the weekend before.

Any questions about the miniproject?

Abstraction

“the process of leaving out consideration of
one or more properties of a complex object
or process so as to attend to others”

* Abstracting with a new function

Using helper functions, basically...
(square x) instead of (* x x)
(third sent) instead of (first (bf (bf sent)))

* Abstracting a new datatype

A datatype provides functionality necessary to
store "something” important to the program

Selectors: to look at parts of the "something".
Constructors: to create a new "something".

Tests (sometimes): to see whether you have a
"something", or a "something else"

Data abstration: words and sentences

Constructors: procedures to make a piece of data

“word, sentence

Selectors: procedures to return parts of that data
piece
—first, butfirst, etc.

Tests: predicates that tell you which type of data
you have

“word?, sentence?

Benefits

Why is "leaving out consideration of", or
"not knowing about", a portion of the
program a good thing?

Consider two ways one can
"understand a program™:
- Knowing what each function does

- Knowing what the inputs are (can be), and
what the outputs are (will be).

Data abstraction in the DbD code

* How does the code separate out processing
of the date-format from the logic that does
the "real™ work?

- Selectors
month-name (takes a date)
date-in-month (takes a date)
? month-number (takes a month name)

- Constructors? Tests?

Recursion

An algorithmic technique where a function, in order to
accomplish a task, calls itself with some part of the
task.

Using recursive procedures

* Everyone thinks it's hard!
- (well, it is... ahal!-hard, not complicated-hard)

* Using repetition and loops to find answers

* The first technique (in this class) to handle
arbitrary length inputs.

- There are other techniques, easier for some
problems.

All recursion procedures need...

1. Base Case (s)

Where the problem is simple enough to be solved
directly

2. Recursive Cases (s)
1. Divide the Problem

into one or more smaller problems

2. Invoke the function
Have it call itself recursively on each smaller part

3. Combine the solutions
Combine each subpart into a solution for the whole

Problem: find the first even number in a sentence of numbers

(define (find-first-even sent)
(1f <test>

(<do the base case>)

(<do the recursive case>)

))

Problem: find the first even number in a sentence of numbers

(define (find-first-even sent)
(1f (even? (first sent))

(first sent) ;base case: return
; that even number
(find-first-even (bf sent))
;recurse on the
; rest of sent

))

Count the number of words in a sentence

(define (count sent)
(Lf (empty? (bf sent)) ;last one?
1 ;base case: return 1
(+ 1

(count (bf sent))) ;recurse on the
; rest of sent

))

Count the number of even-numbers

(define (count-evens sent)

(cond ((empty? (bf sent)) ;last one?
1 ;base case: return 1

((even? (first sent)
(+ 1
(count (bf sent))) ;recurse on the
; rest of sent

((odd? (first sent)
(+ O
(count (bf sent))) ,recurse on the
; rest of sent

)) This one has the error — if the last number in
the sentence is odd, this will return a count one
too large.

Base cases can be tricky

* By checking whether the (bf sent) is empty,
rather than sent, we won't choose the recursive
case correctly on that last element!

- Or, we need two base cases, one each for the last element
being odd or even.

 Better: let the recursive cases handle all the
elements

Your book describes this well

Count the even-numbers (2)

(define (count-evens sent)

(cond ((empty? (bf sent)) ;last one?
1 ;base case: return 1

((even? (first sent)
(+ 1
(count (bf sent))) ;recurse on the
; rest of sent

((odd? (first sent)
(+ O
(count (bf sent))) ,recurse on the
; rest of sent

)) This one has the error — if the last number in
the sentence is odd, this will return a count one
too large.

Count the even-numbers (2)

(define (count-evens sent)

(cond ((empty? (bf sent)) ;last one?
(Lf (even? (bf sent))
1 0)
((even? (first sent)
(+ 1
(count (bf sent))) ;recurse on the
; rest of sent

((odd? (first sent)
(+ O
(count (bf sent))) ,recurse on the
; rest of sent

)) This one works, but it is ugly. Why do the check
for even/odd in the base case, when the
recursive cases are already doing it?

Count the even-numbers (2)

(define (count-evens sent)

(cond ((empty? sent) ;last one?
0 ;base case: return 1

((even? (first sent)
(+ 1
(count (bf sent))) ;recurse on the
; rest of sent

((odd? (first sent)
(+ O
(count (bf sent))) ,recurse on the
; rest of sent

)) Yeah, this one works, and looks good. The
base case is simpler when it checks for the
empty list, rather than the list with one left...

