
CS3:
Introduction to Symbolic

Programming

Fall 2007 Nate Titterton
nate@berkeley.edu

Lecture 5:
“DbD” and data abstraction;

Introduction to Recursion

Schedule

Lecture: Midterm 1
Lab: Advanced recursion

Oct 1-46

Lecture: Recursion
Lab: More complex recursion
Reading: “Dbd, recursive solution” case study
 “Roman Numerals” case study

Sep 24-285

Lecture: Data abstraction in DbD;
 Introduction to recursion
Lab: Work on miniproject I
 Begin recursion
Reading: Simply Scheme, Chap 11 (for Thur/Fri)

Sep 17-214

Lecture: Conditionals, Case Studies
Reading: "Difference between Dates" case

 study, in the reader (first version)
Lab: Explore "Difference between Dates“
 Start miniproject 1

Sep 10-143

Announcements
• Nate's office hours (this week):

- Wed, 2-4, 329 Soda
• Reading for this week

- Simply Scheme, chapter 11
- You really need to do this before Lab on Thur/Fri

• Note: you need to take quizzes in the lab room
- You are allowed 4 quizzes taken while not in

attendance
• The last day to drop is Sept 28th

• Midterm 1 is in 2 weeks (Oct 1st)
- It probably won’t be in this room
- 90 minutes long (4:10-5:40)
- Open book, open notes, no computers…
- There will be a review session the weekend before.

Any questions about the miniproject?

 Abstraction

“the process of leaving out consideration of
one or more properties of a complex object
or process so as to attend to others”

• Abstracting with a new function
 Using helper functions, basically…

(square x) instead of (* x x)
(third sent) instead of (first (bf (bf sent)))

• Abstracting a new datatype
A datatype provides functionality necessary to

store "something" important to the program

- Selectors: to look at parts of the "something".
- Constructors: to create a new "something".
- Tests (sometimes): to see whether you have a

"something", or a "something else"

Data abstration: words and sentences

Constructors: procedures to make a piece of data
-word, sentence

Selectors: procedures to return parts of that data
piece
-first, butfirst, etc.

Tests: predicates that tell you which type of data
you have
-word?, sentence?

Benefits
• Why is "leaving out consideration of", or

"not knowing about", a portion of the
program a good thing?

• Consider two ways one can
"understand a program":

- Knowing what each function does
- Knowing what the inputs are (can be), and

what the outputs are (will be).

Data abstraction in the DbD code

• How does the code separate out processing
of the date-format from the logic that does
the "real" work?

- Selectors
- month-name (takes a date)
- date-in-month (takes a date)
- ? month-number (takes a month name)

- Constructors? Tests?

An algorithmic technique where a function, in order to
accomplish a task, calls itself with some part of the
task.

Recursion

Using recursive procedures
• Everyone thinks it's hard!

- (well, it is… aha!-hard, not complicated-hard)

• Using repetition and loops to find answers

• The first technique (in this class) to handle
arbitrary length inputs.
- There are other techniques, easier for some

problems.

All recursion procedures need…

1. Base Case (s)
• Where the problem is simple enough to be solved

directly

2. Recursive Cases (s)
1. Divide the Problem

• into one or more smaller problems
2. Invoke the function

• Have it call itself recursively on each smaller part
3. Combine the solutions

• Combine each subpart into a solution for the whole

Problem: find the first even number in a sentence of numbers

(define (find-first-even sent)
 (if <test>

 (<do the base case>)

 (<do the recursive case>)

))

(define (find-first-even sent)
 (if (even? (first sent))

 (first sent) ;base case: return
 ; that even number
 (find-first-even (bf sent))
 ;recurse on the
 ; rest of sent
))

Problem: find the first even number in a sentence of numbers

Count the number of words in a sentence

(define (count sent)
 (if (empty? (bf sent)) ;last one?
 1 ;base case: return 1
 (+ 1
 (count (bf sent))) ;recurse on the
 ; rest of sent
))

Count the number of even-numbers

(define (count-evens sent)
 (cond ((empty? (bf sent)) ;last one?
 1 ;base case: return 1
 ((even? (first sent)
 (+ 1
 (count (bf sent))) ;recurse on the
 ; rest of sent
 ((odd? (first sent)
 (+ 0
 (count (bf sent))) ;recurse on the
 ; rest of sent
)) This one has the error – if the last number in

the sentence is odd, this will return a count one
too large.

Base cases can be tricky
• By checking whether the (bf sent) is empty,

rather than sent, we won't choose the recursive
case correctly on that last element!
- Or, we need two base cases, one each for the last element

being odd or even.

• Better: let the recursive cases handle all the
elements

Your book describes this well

(define (count-evens sent)
 (cond ((empty? (bf sent)) ;last one?
 1 ;base case: return 1
 ((even? (first sent)
 (+ 1
 (count (bf sent))) ;recurse on the
 ; rest of sent
 ((odd? (first sent)
 (+ 0
 (count (bf sent))) ;recurse on the
 ; rest of sent
))

Count the even-numbers (2)

This one has the error – if the last number in
the sentence is odd, this will return a count one
too large.

(define (count-evens sent)
 (cond ((empty? (bf sent)) ;last one?
 (if (even? (bf sent))
 1 0)
 ((even? (first sent)
 (+ 1
 (count (bf sent))) ;recurse on the
 ; rest of sent
 ((odd? (first sent)
 (+ 0
 (count (bf sent))) ;recurse on the
 ; rest of sent
))

Count the even-numbers (2)

This one works, but it is ugly. Why do the check
for even/odd in the base case, when the
recursive cases are already doing it?

(define (count-evens sent)
 (cond ((empty? sent) ;last one?
 0 ;base case: return 1
 ((even? (first sent)
 (+ 1
 (count (bf sent))) ;recurse on the
 ; rest of sent
 ((odd? (first sent)
 (+ 0
 (count (bf sent))) ;recurse on the
 ; rest of sent
))

Count the even-numbers (2)

Yeah, this one works, and looks good. The
base case is simpler when it checks for the
empty list, rather than the list with one left…

