
CS3:
Introduction to Symbolic

Programming

Fall 2007 Nate Titterton
nate@berkeley.edu

Lecture 3:
Review of the first two weeks

The “Difference between dates” case study

Announcements

• Nate's office hours, for next week:
- Wednesday, 2-4
- 329 Soda

• Readers are coming up to speed this week,
so look for things to be graded soon…

• Check out the Weiner lecture archives
- http://wla.berkeley.edu
- Video lectures and notes from an earlier version

of CS3 (still mostly relevant in the earlier weeks)

http://wla.berkeley.edu/

Fall 2007 CS3: 3

Schedule

Lecture: Midterm 1
Lab: Advanced recursion

Oct 1-46

Lecture: Recursion
Lab: More complex recursion

Sep 24-285

Lecture: Data abstraction in DbD
Lab: Finish miniproject 1
 Begin recursion

Sep 17-214

Lecture: Conditionals, Case Studies
Reading: "Difference between Dates" case

 study, in the reader (first version)
Lab: Explore "Difference between Dates“
 Start miniproject 1

Sep 10-143

Lecture: Introduction, Review, Conditionals
Reading: Simply Scheme, ch. 3-6
Lab: Conditionals

Sep 3-72

Concepts from first two weeks (1/3)

1. How scheme evaluates input
2. Words and sentences

- Sentences as a “container”
3. Conditionals

- cond and if are special forms
- booleans

truth (#t, or anything) and non-truth (#f)
- logical operators

and, or, not
- predicates

procedures that return booleans
(These end in a ? usually: odd?, vowel?, …)

Fall 2007 CS3: 5

Concepts from last week (2/3)

1. Testing
- There is much more to programming than

writing code. Testing is crucial, and an
emphasis of this course
- Analysis
- Debugging
- Maintenance.
- "Design"

- Testing is an art (there is no one right way)
- boundary cases, helper procedures, etc.

Fall 2007 CS3: 6

Concepts from last week (3/3)

1. Helper procedures
- Choosing when to write helper procedures is

an … art. There is no one right way.

- This is an important skill in programming, and
one you will need to focus on.

Functional abstraction

• Abstraction helps make programs
understandable by simplifying them.

- By letting the programmer or maintainer ignore
details about a task at hand

- Helper functions, when done correctly, do this

This week: Case Studies
• Reading!?

• A case study…
- starts with a problem statement
- ends with a solution
- in between, a story, or narrative
- How a program comes to be

• You will write “day-span”, which calculates
the number of days between two dates in a
year

You need to read this!
• The lab will cover the case study through a

variety of activities.

• We just may base exam questions on it

• It will make you a better programmer!
4 out of 5 educational researchers say so.

Some important points
• There is a large "dead-end" in this text

- Like occur in many programming projects
- Good "style" helps minimize the impacts of

these

• There is (often) a difference between good
algorithms and between human thinking

Fall 2007 CS3: 11

Reminder

• This week, (I think) I will leave in many
SchemeHandler activities.

- Many of these you can do in emacs. Some you
can’t.

- Remember, try using the unix command
clearcache, and then restart firefox, if you are
having trouble.

- Let your TAs help you – we are trying to track
down this bug…

Fall 2007 CS3: 12

Miniproject 1

• By the end of the week, you will start on
miniproject 1:

- write century-day-span, extending the
day-span program to correctly handle dates in
(possibly) different years.

- Consider a central lesson of the case study:
there are easier and harder ways to solve
problems. Choose easier.

This is your first large program
Use helper functions

- Break out self-contained tasks into helper
procedures: they should be easy to name.

- If you can get your main procedure to read like
English, you are doing well.

• Test, and test some more.
- Remember to put test cases above each helper

procedure.
• Reuse code that you have already written
• Add comments!

- Above each procedure, at least.
- Within some cond cases, additionally.

CS3:
Introduction to Symbolic

Programming

Fall 2007 Nate Titterton
nate@berkeley.edu

Lecture 3:
Review of the first two weeks

The “Difference between dates” case study

Fall 2007 CS3: 2

Announcements

• Nate's office hours, for next week:
- Wednesday, 2-4
- 329 Soda

• Readers are coming up to speed this week,
so look for things to be graded soon…

• Check out the Weiner lecture archives
- http://wla.berkeley.edu
- Video lectures and notes from an earlier version

of CS3 (still mostly relevant in the earlier weeks)

3

Fall 2007 CS3: 3

Schedule

Lecture: Midterm 1
Lab: Advanced recursion

Oct 1-46

Lecture: Recursion
Lab: More complex recursion

Sep 24-285

Lecture: Data abstraction in DbD
Lab: Finish miniproject 1
 Begin recursion

Sep 17-214

Lecture: Conditionals, Case Studies
Reading: "Difference between Dates" case

 study, in the reader (first version)
Lab: Explore "Difference between Dates“
 Start miniproject 1

Sep 10-143

Lecture: Introduction, Review, Conditionals
Reading: Simply Scheme, ch. 3-6
Lab: Conditionals

Sep 3-72

Fall 2007 CS3: 4

Concepts from first two weeks (1/3)

1. How scheme evaluates input
2. Words and sentences

- Sentences as a “container”
3. Conditionals

- cond and if are special forms
- booleans

truth (#t, or anything) and non-truth (#f)
- logical operators

and, or, not
- predicates

procedures that return booleans
(These end in a ? usually: odd?, vowel?, …)

1 Does the expression contain parentheses? (I.e. is it a "simple" expression without
parentheses or a "complicated" expression with parentheses?) Note that a quoted
expression such as '(x y) is "complicated", since it really is (quote (x y)). If it's a
number, it's self-evaluating; its value is the number itself. If it's a word, it should
have been associated with a value, so that value is returned.

2 Otherwise, the expression starts with a left parenthesis. Is "quote" the first word
after the left parenthesis? If so, return the quoted word or sentence. Quote is
called a special form since it is evaluated in this special-case way.

3 Otherwise, the first word after the left parenthesis should name a procedure; it is
looked up among the name of procedures that are either built-in or that have been
defined by the user.

4 The arguments are counted to make sure they match the number of placeholder
names.

5 The arguments are evaluated; that is, scheme will work through these 7 steps
separately for each of the arguments. (This has the effect of the "inside-out"
evaluation we did with expressions involving + and *.)

6 The argument values are substituted for the corresponding placeholder names
throughout the body of the procedure.

7 The body expression is evaluated, and the result is the value of the procedure call.

Fall 2007 CS3: 5

Concepts from last week (2/3)

1. Testing
- There is much more to programming than

writing code. Testing is crucial, and an
emphasis of this course
- Analysis
- Debugging
- Maintenance.
- "Design"

- Testing is an art (there is no one right way)
- boundary cases, helper procedures, etc.

Fall 2007 CS3: 6

Concepts from last week (3/3)

1. Helper procedures
- Choosing when to write helper procedures is

an … art. There is no one right way.

- This is an important skill in programming, and
one you will need to focus on.

Fall 2007 CS3: 7

Functional abstraction

• Abstraction helps make programs
understandable by simplifying them.

- By letting the programmer or maintainer ignore
details about a task at hand

- Helper functions, when done correctly, do this

 8

(load "lib/datesv2.scm")
(load "lib/datesv2.scm")
(load "lib/datesv2.scm")

Fall 2007 CS3: 9

You need to read this!
• The lab will cover the case study through a

variety of activities.

• We just may base exam questions on it

• It will make you a better programmer!
4 out of 5 educational researchers say so.

Fall 2007 CS3: 10

Some important points
• There is a large "dead-end" in this text

- Like occur in many programming projects
- Good "style" helps minimize the impacts of

these

• There is (often) a difference between good
algorithms and between human thinking

Fall 2007 CS3: 11

Reminder

• This week, (I think) I will leave in many
SchemeHandler activities.

- Many of these you can do in emacs. Some you
can’t.

- Remember, try using the unix command
clearcache, and then restart firefox, if you are
having trouble.

- Let your TAs help you – we are trying to track
down this bug…

Fall 2007 CS3: 12

Miniproject 1

• By the end of the week, you will start on
miniproject 1:

- write century-day-span, extending the
day-span program to correctly handle dates in
(possibly) different years.

- Consider a central lesson of the case study:
there are easier and harder ways to solve
problems. Choose easier.

 13

