CS3:

Introduction to Symbolic
Programming

Lecture 3:
Review of the first two weeks
The “Difference between dates” case study

Fall 2007 Nate Titterton
nate@berkeley.edu



Announcements

* Nate's office hours, for next week:
- Wednesday, 2-4
- 329 Soda

* Readers are coming up to speed this week,
so look for things to be graded soon...

* Check out the Weiner lecture archives

- Video lectures and notes from an earlier version
of CS3 (still mostly relevant in the earlier weeks)


http://wla.berkeley.edu/

Schedule

2 Sep 3-7 Lecture: Introduction, Review, Conditionals
Reading: Simply Scheme, ch. 3-6
Lab: Conditionals

4 Sep 17-21 Lecture: Data abstraction in DbD

Lab: Finish miniproject 1

Begin recursion
5 Sep 24-28 Lecture: Recursion

Lab: More complex recursion
6 |Octl-4 Lecture: Midterm 1

Lab: Advanced recursion

Fall 2007 CS3: 3



Concepts from first two weeks (1/3)

1. How scheme evaluates input

2. Words and sentences
- Sentences as a “container”

3. Conditionals
- cond and if are special forms

- booleans

truth (#t, or anything) and non-truth (#£)
— logical operators

and, or, not
— predicates

procedures that return booleans
(These end in a ? usually: odd?, vowel?, ...)




Concepts from last week (2/3)

1. Testing

There is much more to programming than
writing code. Testing is crucial, and an
emphasis of this course
Analysis
Debugging
Maintenance.
"Design"
Testing is an art (there is no one right way)
boundary cases, helper procedures, etc.

Fall 2007 CS3: 5



Concepts from last week (3/3)

1. Helper procedures

- Choosing when to write helper procedures is
an ... art. There is no one right way.

- This is an important skill in programming, and
one you will need to focus on.

Fall 2007 CS3: 6



Functional abstraction

* Abstraction helps make programs
understandable by simplifying them.

- By letting the programmer or maintainer ignore
details about a task at hand

- Helper functions, when done correctly, do this



This week: Case Studies
* Reading!?

* A case study...
- starts with a problem statement
- ends with a solution
- in between, a story, or narrative
- How a program comes to be

* You will write “day-span”, which calculates
the number of days between two dates in a
year



You need to read this!

* The lab will cover the case study through a
variety of activities.

* We just may base exam questions on it

* It will make you a better programmer!
4 out of 5 educational researchers say so.



Some important points

* There is a large "dead-end" in this text
- Like occur in many programming projects

- Good "style" helps minimize the impacts of
these

* There is (often) a difference between good
algorithms and between human thinking



Reminder

* This week, (I think) | will leave in many
SchemeHandler activities.

- Many of these you can do in emacs. Some you
can’t.

- Remember, try using the unix command
clearcache, and then restart firefox, if you are
having trouble.

- Let your TAs help you — we are trying to track
down this bug...

Fall 2007 CS3: 11



Miniproject 1

* By the end of the week, you will start on
miniproject 1:

- write century-day-span, extending the
day-span program to correctly handle dates in
(possibly) different years.

- Consider a central lesson of the case study:
there are easier and harder ways to solve
problems. Choose easier.

Fall 2007 CS3: 12



This is your first large program

Use helper functions

- Break out self-contained tasks into helper
procedures: they should be easy to name.

- If you can get your main procedure to read like
English, you are doing well.

* Test, and test some more.

- Remember to put test cases above each helper
procedure.

* Reuse code that you have already written
* Add comments!

- Above each procedure, at least.
- Within some cond cases, additionally.



CS3:

Introduction to Symbolic
Programming

Lecture 3:
Review of the first two weeks
The “Difference between dates” case study

Fall 2007 Nate Titterton
nate@berkeley.edu



Announcements

* Nate's office hours, for next week:
- Wednesday, 2-4
- 329 Soda

* Readers are coming up to speed this week,
so look for things to be graded soon...

* Check out the Weiner lecture archives

- Video lectures and notes from an earlier version
of CS3 (still mostly relevant in the earlier weeks)

Fall 2007 CS3: 2



Schedule

2 Sep 3-7 Lecture: Introduction, Review, Conditionals
Reading: Simply Scheme, ch. 3-6
Lab: Conditionals

4 Sep 17-21 Lecture: Data abstraction in DbD
Lab: Finish miniproject 1

Begin recursion

5 Sep 24-28 Lecture: Recursion
Lab: More complex recursion
6 |Octl-4 Lecture: Midterm 1

Lab: Advanced recursion

Fall 2007 CS3: 3



Concepts from first two weeks (1/3)

1. How scheme evaluates input

2. Words and sentences
- Sentences as a “container”

3. Conditionals
- cond and if are special forms
- booleans
truth (#t, or anything) and non-truth (#£)
— logical operators
and, or, not
— predicates

procedures that return booleans
(These end in a ? usually: odd?, vowel?, ...)

1 Does the expression contain parentheses? (Le. is it a "simple" expression osithout
parentheses or a "complicated" expression with parentheses?) Note that a quoted
expression such as '(x y) is "complicated", since it really is (quote (x y)). If it's a
number, it's self-evaluating; its value is the number itself. If it's a word, it should
have been associated with a value, so that value is returned.

2 Otherwise, the expression starts with a left parenthesis. Is "quote"” the first word
after the left parenthesis? If so, return the quoted word or sentence. Quote is
called a special form since it is evaluated in this special-case way.

3 Otherwise, the first word after the left parenthesis should name a procedure; it is
looked up among the name of procedures that are either built-in or that have been
defined by the user.

4 The arguments are counted to make sure they match the number of placeholder
names.

5 The arguments are evaluated; that is, scheme will work through these 7 steps
separately for each of the arguments. (This has the effect of the "inside-out"
evaluation we did with expressions involving + and *.)

6 The argument values are substituted for the corresponding placeholder names
throughout the body of the procedure.

7 The body expression is evaluated, and the result is the value of the procedure call.



Concepts from last week (2/3)

1.

Testing

- There is much more to programming than
writing code. Testing is crucial, and an
emphasis of this course

Analysis
Debugging
Maintenance.
"Design"

- Testing is an art (there is no one right way)

boundary cases, helper procedures, etc.

Fall 2007 CS3: 5



Concepts from last week (3/3)

1. Helper procedures

- Choosing when to write helper procedures is
an ... art. There is no one right way.

- This is an important skill in programming, and
one you will need to focus on.

Fall 2007 CS3: 6



Functional abstraction

* Abstraction helps make programs
understandable by simplifying them.

- By letting the programmer or maintainer ignore
details about a task at hand

- Helper functions, when done correctly, do this

Fall 2007 CS3: 7



(load "lib/datesv2.scm")
(load "lib/datesv2.scm")
(load "lib/datesv2.scm")



You need to read this!

* The lab will cover the case study through a
variety of activities.

* We just may base exam questions on it

* It will make you a better programmer!
4 out of 5 educational researchers say so.

Fall 2007 CS3: 9



Some important points

* There is a large "dead-end" in this text
- Like occur in many programming projects

- Good "style" helps minimize the impacts of
these

* There is (often) a difference between good
algorithms and between human thinking

Fall 2007 CS3: 10



Reminder

* This week, (I think) | will leave in many
SchemeHandler activities.

- Many of these you can do in emacs. Some you
can’t.

- Remember, try using the unix command
clearcache, and then restart firefox, if you are
having trouble.

- Let your TAs help you — we are trying to track
down this bug...

Fall 2007 CS3: 11



Miniproject 1

* By the end of the week, you will start on
miniproject 1:

- write century-day-span, extending the
day-span program to correctly handle dates in
(possibly) different years.

- Consider a central lesson of the case study:
there are easier and harder ways to solve
problems. Choose easier.

Fall 2007 CS3: 12



13



