
Algebraic
Simplification: A Guide
for the Perplexed
Joel Moses*
Project MAC, MIT, Cambridge, Massachusetts

Algebraic simplification is examined first from the
point of view of a user who needs to comprehend a large
expression, and second from the point of view of a
designer who wants to construct a useful and efficient
system. First we describe various techniques akin to
substitution. These techniques can be used to decrease
the size of an expression and make it more intelligible to
a user. Then we delineate the spectrum of approaches to
the design of automatic simplification capabilities in an
algebraic manipulation system. Systems are divided into
five types. Each type provides different facilities for the
manipulation and simplification of expressions. Finally
we discuss some of the theoretical results related to
algebraic simplification. We describe several positive
results about the existence of powerful simplification
algorithms and the number-theoretic conjectures on which
they rely. Results about the nonexistence of algorithms
for certain classes of expressions are included.

Key Words and Phrases: algebraic manipulation,
algebraic simplification, canonical simplification

CR Categories: 3.1, 3.2, 3.6, 4,9, 5.2, 5.9

Copyright (~) 1971, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of

this material is granted, provided that reference is made to this pub-
lication, to its date of issue, and to the fact that reprinting privileges
were granted by permission of the Association for Computing
Machinery.

This is a revised version of the paper which appeared in the
Proceedings of the Second Symposium on Symbolic and Algebraic
Manipulation, March 23-25, 1971, pp. 282-304.

1. Introduction

Simplification is the most pervasive process in
algebraic manipulation. It is also the most controversial.
Much of the controversy is due to the difference between
the desires of a user and those of a system designer.
The user wants expressions which he can comprehend.
The designer wants expressions which can be manipu-
lated with great ease and efficiency. Users tolerate, and
in fact prefer, a certain amount of redundancy in an
answer. For example, they usually desire to see expres-
sions containing the twelve trigonometric and hyperbolic
functions. Designers would prefer giving a user only
sines and cosines or just exponentials with complex
arguments.

There is one property of simplification about which
both users and designers can agree. That is, that simpli-
fication changes only the form or representation of an
expression, not its value. Thus an ideal, but not very
helpful, way to describe simplification is that it is the
process which transforms expressions into a form on
which the remaining steps of a computation can be most
efficiently performed.

The problem of representation for algebraic expres-
sions is especially acute because there are so many
equivalent ways to represent an expression. Frequently
one of these equivalent forms is much more useful than
another, and, just as frequently, it is a nontrivial
problem to recognize the equivalence. For example, it

* Department of Electrical Engineering. Work reported herein was
supported by Project MAC, an MIT research program sponsored by
the Advanced Research Projects Agency of tthe Department of
Defense under Office of Naval Research contract number N00014-
70-A-0362-0001.

527 Communications August 1971
of Volume 14
the ACM Number 8

is rare that we do not want to recognize that an expres-
sion is equivalent to 0, but many of us have difficulty
in recognizing the following identities:

(2 ; + 4 ~) 3 - 6(2 ~ + 4 ~) - 6 = 0

or

log tan (½x + ~Tr) - sinh - t tan x = 0.

Consider how much more difficult the problems become
when we deal with expressions which are several pages
long. Yet expressions of such size are quite common in
algebraic manipulation! An additional difficulty is that
the usual manipulatory algorithms can easily magnify
a bad choice of representation. For example, the deriva-
tive of a product of n factors can be a sum of n terms
each of n or more factors.

Another issue which arises in discussions of simpli-
fication is related to the local or global nature of the
problem. If expression A is deemed simpler than its
equivalent expression B in one context, then is A to be
considered simpler than B in every context? A perfectly
strict answer is no. For example, xT/(x 12 + 1) is a more
compact representation of the rational function it
represents than ~(4x3)x4/[(x4) 3 + I]. The former is
usually easier to manipulate and comprehend. However,
when integrating, the latter expression indicates a pat-
tern which suggests the substitution y = x 4 which
yields

f ¼ Y d y ,
y ~ + 1

a much simpler integration problem than that which is
posed by the first expression. Designers would prefer a
system in which the simplification steps are the same
in every context. Users clearly would prefer a system
which could take contextual information into account
in deriving a simplified expression.

A related issue regarding simplification is the extent
to which the concept can be formalized. The point that
we made above is that the simplest form of an expres-
sion depends on one's goals or, in other words, on the
context. One would be hard put to formalize the goals
of all potential users. However, we can obtain theoretical
results for simplification algorithms which have useful
properties. One such property is that the algorithm
simplifies to zero any expression equivalent to 0. A
stronger property is that the simplifier reduces all
equivalent expressions to a single (canonical) expression.

Historically, simplification was required in algebraic
manipulation systems because the manipulatory algo-
rithms produced sloppy results. For example, the un-
simplified result of differentiating ax + xe x' with respect
to x is an expression such as

O.x + a. 1 + 1.e ~ + x . e ~ . 2 . x .

"Simplifying the derivative above would yield an expres-
sion like a q- e x2 + 2x~e ~.

With the ever growing use of algebraic manipulation,
it has become increasingly apparent that simplification
plays a much more complex role in the way one solves
problems with an algebraic manipulation system. In the
remainder of this paper we shall discuss some capabili-
ties users wish to see in an algebraic manipulation
system, and the variety of simplification facilities cur-
rently offered by such systems. The paper ends by dis-
cussing a number of formalizations of the concept of
simplification and the algorithms corresponding to such
formalizations.

2. Simpli f icat ion for the S a k e of Comprehens ion- - the
Needs o f Users

One of the most common complaints of users of
algebraic manipulat ion systems is that the expressions
obtained as results of a calculation are incomprehensible
and therefore essentially useless. In order to understand
the importance of such a complaint we have to differ-
entiate between two major classes of users. Some users
are only interested in the value of a calculation. For
example, those who use symbolic differentiation as a
step in a numerical calculation do not care very much
about the form of the symbolic derivative, t For such
users the problem of simplification reduces to keeping
the intermediate expressions in a calculation in a form
which optimizes the use of space and time in the calcula-
tion.

The second class of users includes those who need
to make "physical sense" of an expression. Perhaps
such a user is studying a process and wants to learn
about some property of the process by manipulating a
mathematical model of it. For example, he might be
interested in the manner in which the value of an expres-
sion varies as one of its variables increases in value.

It should be clear that a user is likely to comprehend
and to answer questions about a small expression a lot
better than about an equivalent but larger one. Thus a
goal of simplification should be to produce small ex-
pressions. In fact, most of the usual simplification
transformations such as collecting terms in sums (e.g.
x + 2x ~ 3x) produce smaller expressions. Moreover,
t ransformations which produce larger expressions (e.g.
expanding integral powers of sums [(x + 1) ~ ~ x 3 -Jr

Such users should care a little about the form of the derivative be-
cause some forms of expressions yield a smaller round-off error in a
numerical calculation than other forms.
2 An exception to this rule is represented by programs that recognize
the next number in a sequence [1]. Such programs would, in fact,
recognize the pattern in the former expression.

528 Communications August 1971
of Volume 14
the ACM Number 8

3x 2 + 3x + 1)] are controversial. Many systems will
employ such transformations only if the user specifically
demands them.

Of course the prevalence in algebraic manipulation
systems of simplification transformations which produce
smaller expressions is due mostly to the fact that small
expressions are usually easier to manipulate than larger
ones. This is an instance where the needs of simplifica-
tion for the sake of improved comprehension and
simplification for the sake of efficient manipulation
coincide.

The requirements of simplification for the sake of
comprehension are, however, more subtle than we have
just indicated. It is not so much the small size of the
expression which aids in comprehension, as the small
size of a description of the expression. For example,

1 + 2x + 3x 2 + 4x 3 + . . . + 1 lx 1°

is less complex for many purposes than

1 + 3x + 4x 2 + x 3 -- 9x 4 .+ 5x 5 + x e -q- 2x 7

because one can supply a small description of the former,
[i.e. ~°_-0 (i + l)x~], but not of the latter. The way
one usually obtains a small description is by recognizing
a repeated pattern in an expression. Unfortunately,
computer programs nowadays are not as good as
humans at recognizing useful patterns. 2

A major reason for computers not being as good as
human users in simplifying an expression is that they
lack knowledge of the context in which the expression
was derived. To a physicist subexpressions like rn& con-
tain a good deal of information not apparent to an
algebraic manipulation system. For example, a physicist
might be tempted to substitute E for m & in order to
reduce the size of the expression without destroying its
information content to him. In fact, the major technique
for simplifying large expressions is the substitution of
small expressions for large subexpressions which either
occur frequently or possess some meaning. We shall
examine this technique in Section 2.1.

2.1 Substitution as an Aid to Comprehension
Many symbolic calculations take the following form:

One starts with some equations such as

y = g (x) ,

z = h (x) ,

f = x 2 + y~ + &.

and expressions such as
5

E: ~ c i x i .
~ 0

Later one substitutes such equations and expressions
into another expression such as [(Of/Ox) 2 + 2 E 2] / f 3 .

Then one attempts to simplify the resulting expression.
In this section we are interested in the process of making
intelligible large expressions such as the one which

Fig. 1

A B M N R S H I
C D O P T U J K
M N A B H 1 R S
O P C D J K T U
R S H I A B M N
T U J K C D O P
H I R S M N A B
J K T U O P C D

Letus call the array I AB re I r, CO [a, the array] MN oP re, the arrayl ns
and the array I Jh~l h. Let us call the array I ,~'~l w, and the array
I~l .r. Then the entire array is simply I~',~ 1. While the original
structure consisted of 64 symbols, it requires only 35 to write down
its description:

s =17~1

R B H I
~ ~ J K

would result if we performed the substitutions and
carried out the derivatives and expansions in the ex-
pression above.

Frequently the process of simplifying large expres-
sions involves a reversal of the process which led to the
expression above. That is, one substitutes small expres-
sions (usually literals) for large subexpressions which
occur more than once in the expression. The literals
being substituted into the expression act as names or
labels for the expressions that they replace. This is the
role o f f , y, and z in the expression above.

An artificial example which points out the value of
substitution to the comprehension of an expression
occurs in [31]. The example shows how to obtain a
compact description of the matrix in Figure 1. We ob-
tain a hierarchical description by recognizing patterns
in the matrix and patterns in the matrix of literals that
we substituted, etc. We finally reduce the 64 characters
in the original matrix to 35 characters in the final matrix
and all the associated equations. However, the hier-
archical description seems to make the simplified result
much clearer than is implied by the ratio 35/64.

The process of finding good subexpressions to re-
place usually involves some trial and error. It is useful
to replace subexpressions which have some meaning in
the context of the problem. In such cases we need not
require that the subexpression being replaced occur more
than once in the expression. Beyond such generalities,
there does not seem to be much one can say at present
which is frequently useful in the "massaging" process
for large expressions. We should note that one often
combines substitution with other manipulations (e.g.
carrying out expansions or differentiations which have
been delayed).

A technical problem arises when one makes substi-
tutions for expressions other than atomic ones. Consider
the problem of substituting a for x y 2 in the expression
x2y 3. Some possible results of this substitution are

529 Communications August 1971
of Volume 14
the ACM Number 8

(1) x2~, (2) axy, and (3) a2/y. One cannot say that
there is a "correct" answer, because what is appropriate
in one context need not be appropriate in another. Yet,
no system, until recently, gave the user much choice in
the result of substitution. The REDUCE system of Hearn
[16, 17] has a good deal of machinery for making sub-
stitutions, but it does not give the user much control
over the effects of its substitutions. Fateman [12, 20]
has recently arrived at the following analysis of the
problem. For simplicity, we shall make the analysis for
polynomials, but it can be easily extended to more com-
plex expressions.

Let us suppose we are trying to substitute A for B
in C. We shall consider C to be represented as

~7=0 ~ n ~.

Thus the substitution will yield ~ = 0 a~A i. This
representation of C is nonunique. We can make the
representation precise by imposing constraints on the
coefficients c~. Let us assume that the variables in B
are ranked in some way. Fateman's substitution pro-
grams usually provide that the degree of the main
variable of B is lower in each a~ than in B itself. In
addition, one can restrict the coefficients (1) to not
contain a sum, (2) to be polynomials (and not rational),
and (3) to have lower degree in all of the variables of B
than the degree of those variables in B.

By varying these and other conditions, and by
modifying the ranking of the variables, one can get a
variety of results. One can then choose that result which
seems most useful in the computation.

Some examples of substitutions made with Fate-
man's routines are given in Figure 2. The ability of
Fateman's routines to obtain the results in the last four
examples is due to the technique of continually dividing
C by B. The last two examples indicate how this sub-
stitution mechanism provides for the application of the
oft-discussed transformation sin2(x) + cos2(x) ~ 1.

3. Simplification for the Sake of Manipulat ion--What
Designers Provide

3.1 The Politics of Simplification
Simplification is such a central issue in algebraic

manipulation that when a designer has decided how he
will represent expressions, what changes of representa-
tion his system will perform automatically, which of these
automatic transformations he will let the user override
and modify, and what additional facilities for simplify-
ing expressions his system will have, there are few major
decisions remaining. As a result, one can classify
algebraic manipulation systems by their approaches to
simplification.

Four years ago, when we last surveyed the scene
[23], we classified algebraic manipulation systems into
three categories: conservatives, liberals, and radicals. In

the meantime, there has been a slight change in the
characteristics of some systems, and the characteristics
of other systems have stabilized sufficiently so that we
now claim the entry of two new parties, namely, the
new left and the catholics.

The classification that we make of systems is based
on a single cri ter ion--the degree to which a system
insists on making a change in the representation of an
expression as provided by a user. A system which insists
on radically altering the form of an expression in order
to get it into its internal form is called a radical one in
our scheme. A system which is so unwilling to make an
inappropriate transformation that it essentially forces a
user to program his own simplification rules is called a
conservative system. A system which will make certain
transformations automatically, but will leave others to
the discretion of a user, is called a liberal system. The
new left is mainly composed of variations of old radical
systems which give certain additional choices to a user.
Designers of catholic systems see the merit of each of
the other approaches for some contexts. They design
systems which offer several subsystems using different
simplification techniques, and let the user switch among
them as he pleases.

3.1.1 The Radicals. Radical systems can handle a
single, well-defined class of expressions (e.g. poly-
nomials, rational functions, truncated power series,
truncated Poisson series). The expressions in this class
are represented in a canonical form. That is, any two
equivalent expressions in the class are represented
identically, internally. This means that the system
stands ready to make a major change in the representa-
tion of an expression as written by a user in order to
get that expression into the internal canonical form.
The advantage of this approach is that the task of the
manipulatory algorithms is well defined and lends itself
to efficient implementation. In fact, most of the major
advances in algorithm design in the field of algebraic
manipulation such as in the greatest common divisor
algorithm, polynomial factorization, and integration
have assumed expressions represented in canonical
f o r m .

Radical systems do not appear to have specialized
simplification machinery since the process of generating
expressions in canonical form, which is automatically

Fig. 2

Substi tut ion of .4 for B in C

Alternative
.4 B C results

--1
1
1

!xy~

2x + 3y

x + y

32 -~- C 2

S 2 -~ C 2

x2y 3

3 x + 4 y + 1

5x + by + 1
i 4 + 1
s 4 + 2s2c 2 + c 4
(s~- s)c-~

axy,
a2/y,
x~y ~

3x + 4 y + 1,
~x + ~a + 1,
- ~ y + ~a + 1
a b + 1
2

530 Communications
of
the ACM

August 1971
Volume 14
Number 8

employed by the manipulatory algorithms (e.g. addition,
multiplication, differentiation), is akin to simplification.
An expression written in its canonical form is considered
simplified, once and for all time. Any attempt to allow
the user to modify the representation of an expression
for his problem will likely cause a decrease in the
efficiency of the manipulatory algorithms and is there-
fore eschewed or highly discouraged by designers of
radical systems.

Excellent examples of radical systems are polynomial
manipulation systems. One canonical representation of
polynomials is the recursive representation used in
Collins' PM and SAC-I systems [6, 7]. One assumes a
ranking of the variables such as x > y > z. The poly-
nomial is considered as a polynomial in the major
variable with coefficients which are polynomials in the
other variables and which are themselves represented
in this recursive form. Thus

3x2y 2 - 2x2yz 3 -9 5x2z 2 -9 4x - 6y3z -9 y3 -9 3 f

-9 z4 -9 1

would be represented as

(3y 2 -- (2z3)y -9 5z~)x 2 -9 (4)x -9 ((--6z -9 1)y a -9 3y 2
+ z 4 + 1).

The other major representation of polynomials,
popularized in the ALPAK system of Brown [2], is the
expanded representation. The first polynomial is written
in expanded form.

Situations in which there is widespread disagreement
with the radical approach usually concern expressions
which contain powers of sums. The radical systems
would automatically expand such expressions in order
to put them into the canonical form. Other designers
would complain that (x -9 1) l°°° should almost never
be expanded. For example, the integral of (x -9 1) 1°°°
with respect to x is trivially found if the integrand is not
expanded. However, computing the integral of the ex-
panded expression requires more time and space, and
the final result appears atrocious to the human eye un-
less the pattern is recognized.

3.1.2 The New Left. The new left arose in response
to some of the difficulties experienced with radical sys-
tems such as those caused by the automatic expansion
of expressions. A new left system is usually a rational
function system which does not necessarily expand prod-
ucts or integer powers of sums. A new left system will
have all the usual machinery of a radical system, but the
algorithms will be generalized to handle unexpanded
expressions. The new left thus sacrifices canonicalness
and some of the well-definedness of the manipulatory
algorithms for the ability to solve some problems more
efficiently than is possible in a radical system. The user
of a new left system can specify when expansion will
take place, a facility which is, of course, not present in
a radical system.

Systems which allow unexpanded terms in an ex-
pression are Hearn's latest version of REDUCE [18], and
the latest version of ALTRAN [15].

A new left system can usually handle a wide variety
of expressions with greater ease, though with less power,
than a radical system using a canonical form. The idea
is to use labels for nonrational expressions. Thus xe • -9
x 2 sin x might be rewritten as x y -9 x2z, where y = e Z,
and z = sin x. The expression (e 2x + e~)/e • would
probably be expressed as

(y + z) / z , y = e 2~, z = e~,

since no attempt probably would be made to write the
expression in canonical form.

3.1.3 The Liberals. Liberal systems rely on a very
general representation of expressions and use simplifica-
tion transformations which are close in spirit to the ones
used in paper-and-pencil calculations. Liberal simpli-
fiers perform the usual simplifications of collecting terms
in sums and exponents in products, applying the rules
regarding 0 and 1, and removing redundant operators
(e.g. a + (b + c) --~ a + b + c). Frequently such systems
will also know simplification rules for certain arguments
of nonrational functions. Thus sin 27r might simplify
to 0, e 2~°g ~+x might simplify to f e L and cos (arcsin x)
to (1 - x 2)~.

Liberal systems differ from radical and new left
systems in several important ways.

(1) Expansions are carried out only if the user so de-
mands (new left systems, of course, offer this feature
also).
(2) Sums of quotients are never put over a common
denominator unless the user forces such a transforma-
tion, but even if they are, the greatest common divisor
cancellations are likely to be missed.
(3) Expressions can usually be represented in "un-
simplified" form. That is, 1-sin(x) -9 0.cos(x) can
be represented in such systems. This allows patterns
to be represented. Most manipulatory algorithms will,
however, require that all their arguments be simplified,
thus destroying the patterns.
(4) Nonrational terms can be expressed with great
ease. Terms such as e ~, x!, and ~ = o c~x ~ would be
explicitly present in the expression, and would not b6
replaced by a label whenever they occurred.
(5) The representation is local in the sense that a
term sin(x) appearing in one part of the expression
can be modified without affecting a sin(x) appearing
in another part of the expression.

The major disadvantage a liberal system has relative
to a radical or new left system is its inefficiency. The
representation of information in a liberal system might
require two or three times as much space as in a radical
system, and manipulations can be a factor of ten slower
(of course such figures might increase or decrease

depending on the situation).
The advantage claimed for liberal systems is that

one can express problems more naturally in them than
in radical or new left systems. Examples of liberal sys-
tems are FORMAC [33], and most LisP-based algebraic
simplification programs such as Korsvold's [19].

531 Communications August 1971
of Volume 14
the ACM Number 8

3.1.4 The Conservatives. Designers of conservative
systems claim that one cannot design simplification rules
which will be best for all occasions. Therefore conserv-
ative systems provide little automatic simplification
capabilities. Rather, they provide machinery whereby a
user can build his own simplifier and change it when
necessary. A simplifier written in such a way is far
slower than a liberal simplifier, and this fact presents a
distinct disadvantage for conservative systems. In fact,
one can point to only two major conservative systems,
Fenichel's FAMOUS [13] and FORMULA ALGOL [27].

The importance of conservative systems lies in the
philosophy they represent, which is most clearly given
by Fenichel [13], and in the technique which they cham-
pion of using rules and advice to describe simplifica-
tion transformations. Their philosophy presents an
indictment of all the other systems which perform
many simplification transformations automatically,
without seriously considering the context. Designers of
conservative systems emphasize that the simplified
form of an expression is determined by context. They
will point to situations where even the most obvious

I

transformations O.x ~ 0 and 1.x ~ x will destroy
useful information as in the expression

O. sin x -b 1-cos x --b 2-tan x q-- 3. cot x
+ 4 - s e c x + 5 . c scx .

Therefore, they claim that one must be able to tune the
system to the particular nature of the problem. The
preferred technique of " tuning" is based on the theo-
retical concept of Markov algorithms. In a Markov
algorithm one is given an ordered set of rules to apply
to an expression. Each rule has the form:

Pattern ~ Replacement.

For example, one such rule applied to algebraic ex-
pressions might be A. X -{- B. X ~ (A -q-- B). X.

To make such a rule correspond to the usual notion
of "collecting like terms," one might want to restrict A
and B to be numbers, while X could represent any prod-
uct of factors other than numbers. The rule just given
does not necessarily yield a simplified result in cases
such as 2 .X- t - (- 1).X--~ 1.X. One generally applies
a whole set of rules to a given expression, and when
there is no rule which is applicable then the algorithm
is complete.

Such rules are most appropriate in indicating local
transformations on an expression. 3 One would not wish
to write a factoring program as a Markov algorithm.
Conservative systems have tended to model liberal
systems rather than radical ones, since the latter spe-
cialize in global transformations on expressions.

Several designers have added to their systems a
capacity for writing Markov algorithms, thus allowing
their systems to take on various degrees of conserva-
tism. The main use of rules in such systems has been
to add new simplification transformations [e.g. cos

nr ~ (-- 1)'~], rather than to override old transforma-
tions. Thus a user of REDUCE can define the simpli-
fication rules relating to general exponentiation (e.g.
x ~ . x z --~ x ~ + z) , although he cannot override x 0 --~ 1.
Korsvold's simplifier and MACSYMA'S pattern matching
subsystem [11] also allow one to define simplification
rules. The latter allows one to override many of the
built-in rules. It also provides for the compilation of
new rules which should yield a relatively efficient
simplifier.

3.1.5 The Catholics. Catholic systems use more than
one representation for expressions, and have more titan
one approach to simplification. The basic idea under-
lying catholicism is that if one technique does not work,
another might, and the user should be able to switch
from one representation and its related simplification
facilities to another with ease. A catholic system might
use a liberal simplifier for most calculations and have
a radical subsystem in reserve for performing special
calculations such as combining quotients, solving linear
equations with rational coefficients , and factorization.
MATHLAB [9] is best described as a catholic system. The
MACSYMA system [20] goes further in that it allows the
user to manipulate entirely with a radical rational func-
tion subsystem, as well as with a liberal-radical com-
bination as just described. In addition, MACSYMA, as
pointed out in 3.1.4, has a rule-defining facility which
allows it to closely approximate a conservative system.
The SCRATCHPAD system [14] is a conglomerate made
up of several LisP-based systems. It has a total of four
simplifiers.

The designers of catholic systems emphasize the
ability to solve a wide range of problems. They would
like to give a user the ease of working with a liberal
system, the efficiency and power of a radical system, and
the attention to context of a conservative system. The
disadvantage of a catholic organization is its size. A
catholic system is necessarily larger than any other type
of system. The variety of the services provided by the
system may force users to learn a larger number of con-
ventions than in other systems. A catholic designer may
also impose a number of system-wide conventions (e.g.
on the data representation) which would not be present
in a smaller system. Such conventions might slow down
all of the component systems.

3.2 Intermediate Expression Swell
Users of numerical analysis programs have learned

to anticipate problems due to round-off errors. Users
of symbolic manipulation programs have encountered

3 The author begs for forgiveness of the reader for not defining
"local." That concept tends to be as context dependent as the con-
cept of simplification. However, see [22].

532 Communications August 1971
of Volume 14
the ACM Number 8

a corresponding problem in the tremendous growth of
intermediate expressions in some calculations. Such
growth has caused many calculations to be aborted be-
cause the expressions filled the available computer
memory. Tobey has described this phenomenon with the
colorful phrase "intermediate expression swell" [32].
In many cases the final result of a symbolic calculation
is quite small, but in order to get that result one generates
very large intermediate expressions. For example, the
eigenvalue of a matrix with polynomial entries can be
as simple as a single number. However, in order to ob-
tain that number, one is forced to factor a polynomial
having polynomials as coefficients. These coefficients
might be obtained from the determinant of the matrix,
which can be several pages long.

In some problems one can apply one's knowledge of
subsequent steps in a calculation in order to keep ex-
pressions in a form which will maximize utilization of
space and time. At the heart of Collins' improvement
to the Euclidean GCO algorithm [81 was the idea that
one could predict how certain terms were automatically
introduced into the intermediate expressions, and there-
fore these terms could be canceled without affecting
the final result. Before the appearance of this algorithm,
it was thought that the size of the coefficients in the
intermediate steps of the algorithm had to grow ex-
ponentially. Collins showed that they need only grow
linearly !

Of course, results such as Collins' would not be ex-
pected from the average user; however, improvements
of a similar nature can be made in many applications of
algebraic manipulation. For example, consider y =
)--~7=1 x ~, which is an approximation for x / (1 - x).
Suppose you wanted ~ 0 J . The straightforward
application of expansion in the latter sum would yield
a polynomial of degree n 2. However, since y is only
accurate to degree n, all powers of x greater than n are
worthless. What is called for is a truncation in the
expansion of powers greater than n. Systems which
allow the user to specify truncation (e.g. by declaring
x m = 0 for m > n) can probably save factors of 100
or 1000 in speed for n = 20 [10].

3.3 Canonical Simplifiers and Theoretical Results
In this section we shall discuss theoretical results

related to algebraic simplification. Almost all of the
algorithms we shall describe are incomplete in the sense
that they depend on as yet unproved conjectures about
expressions involving constants. For example, the con-
jecture by Brown [3] has, as a special case, the statement
that e + ~- is not a rational number. That statement is
almost certainly true, but no proof of it exists, and
certainly none exists of the full conjecture. Even if the
conjectures were false, the average user will probably
never obtain incorrect results from these algorithms.

All of the results deal with well-defined classes of
expressions which are extensions of polynomials or
rational functions. Some deal with exponentials, others
with both exponentials and logarithms, and still others

with roots of polynomials. We shall also discuss a
negative result, due to Richardson, which says that when
one deals with expressions involving the sine and
absolute value functions, then one cannot, in general,
tell whether such expressions are equivalent to zero.

The simplification algorithms fall into three cate-
gories: zero-equivalence, canonical, and regular. Zero-
equivalence algorithms can determine whether an ex-
pression in a given class is equivalent to 0. Such algo-
rithms need not simplify a nonzero expression in any
way. Canonical simplification algorithms transform all
equivalent expressions in a given class into the same
(canonical) form. Canonical simplifiers are zero-
equivalence algorithms. It is an elementary but surpris-
ing fact that if a class of expressions E possesses a zero-
equivalence algorithm it also possesses a canonical
simplification algorithm. We assume that there exists an
algorithm which generates a sequence of members of E
in which any given member of E can be found, in a
finite number of steps. In order to obtain the canonical
form for an expression f in E, we generate members of
E until one is shown to be equivalent to f by the zero-
equivalence algorithm. This argument points out a weak-
ness in the definition of canonical forms-- the canonical
form need not be a simpler expression than the original
expression.

Regular simplification algorithms arise when one
deals with transcendental functions (e.g. exp, log). A
regular algorithm guarantees that all nonrational terms
in the simplified expression are algebraically inde-
pendent. A set of expressions is algebraically inde-
pendent (over the rational numbers) if in its elements
there exists no nontrivial polynomial with rational
number coefficients which is equivalent to 0. Regular
algorithms are zero-equivalence algorithms, but need
not be canonical ones. Likewise, canonical algorithms
need not be regular.

3.3.1 Simplification Algorithms for Expressions with
Nested Exponentials. In [3] Brown describes a regular
simplification algorithm for a class of expressions he
calls Rational Exponential (REX) expressions. These
REX expressions are obtained recursively from the
rational numbers, i, and rr, and the variables
x l , x2, • • • , xn, by the rational operations of addition,
subtraction, multiplication, and division, and by forming
exponentials of existing REX. Thus the expression

et'~/(eX+l)l/(e 5x _1_ 3e 2x + xe 4e1+1)

is a REX expression if we agree to write x for Xl when
only one variable occurs. Brown's algorithm makes use
of the technique frequently mentioned in this paper of
substituting labels for subexpressions (in this case,
exponentials) in order to reduce a REX expression to a
rational expression in the variables and the labels. The
major simplification work in the algorithm occurs when
the resulting rational expression is transformed into a
canonical form. We shall see, however, that Brown's
algorithm is not canonical. It should be noted that
since the constants i and ~- are included, the REX expres-

5,33 Communications August 1971
of Volume 14
the ACM Number 8

sions contain the trigonometric and hyperbolic func-
tions in exponential form.

In generating labels for the algorithm one must pay
great attention not to allow algebraically dependent
exponentials to be assigned to different labels. For
example, e • and e 2~ are algebraically dependent since
(e~) 2 -- e ~ = 0. Likewise, e ~, e ~2, and e ~+~2 taken
together are algebraically dependent. The labeling
scheme must be such that if we assign y to eL then
e 2~ is assigned y2.

The algorithm proceeds by replacing innermost ex-
ponentials in the expression by labels, if such exponen-
tials are not algebraically dependent on previously
replaced exponentials. The algebraic dependency is
determined with the help of the conjecture by testing
whether the argument (of the exponential function)
being examined is linearly dependent on previous argu-
ments. The following is a simple example of the pro-
cedure, and incidentally shows its simplifying power.

Suppose we are given the REX expression (e • -Jr x) /

(e 2. + 2xe • + x2). Traversing the numerator from left
to right, we first encounter e *. Let q~ = x and rl =
eq = e x. Thus our first label is r l . By substituting it
into the expression we obtain (rl + x) / (e 2~ + 2xrl + x2).

By treating e 2~ as an independent variable in the
expression above, we can try for a simplification by
determining the greatest, common divisor of both
numerator and denominator.

That attempt is unsuccessful in reducing the expres-
sion and we continue generating labels. We next en-
counter the exponential e ~. Let q2 = 2x, r2 = eq2 =
e% Now check to see if a linear dependence exists
between q~ and q2 (and also with irr, it turns out). Such
a relation does exist, since 2ql - q2 = 0. Therefore,
redefine r~ = rt 2 and by substitution obtain (r~ + x) /

(rl ~ + 2xra + x2). Simplifying this as a rational function
reduces it to 1/(r l + x) .

Since no more exponentials are to be found, replace
the labels by the exponentials. The result is 1/(e • + x),
which is indeed simpler than the expression we had
originally.

Brown's conjecture is that if {qx, q2, " . , q~, i~-} is
linearly independent over the rational numbers,
{e% e% . . . , eqk, Xl , X2 , " '" , X , , r} is algebraically
independent over the rational numbers. Using the con-
jecture, Brown can easily prove that the only simplified
REX expression equivalent to 0 is 0 itself. Note that since
1 and irr are linearly independent, the conjecture states
that e I and r are algebraically independent, a statement
which is stronger than the currently unproved statement
"e + rr is not a rational number."

An important aspect of the algorithm is the retracing
of steps one must go through in some cases. Consider
(e 2~ + e=)/e ~. Let qx = 2x, rl = e ql = e 2". Now q2 =
x, r2 = e * ,andq2 = ½ q , . W e c a n n o t l e t r 2 = r~½ since
we want to obtain rational results. So we redefine rx as
r22 and obtain (r22 + r2)/r., = r2 + 1 = e ~ + 1.

Brown's algorithm is not canonical because the
algorithm does not make an optimal choice for labels.

534

Consider ex+x2/e x. Let ql = x + x 2, rl = e ~+~', q2 =
x, r2 = e ~. Note that {ql, q~, iv} is linearly inde-
pendent over the rational numbers. Thus {rl, r2, x, ~}
is algebraically independent by the conjecture. Further-
more, rl/r2 is simplified as a rational expression. Hence,
the simplified result is e x + ~2/e~, which differs from the
equivalent expression e ~' which is also simplified. So
the algorithm is not canonical.

Brown's algorithm produces different results when
the expressions are reordered. In

(el/(~ +~2~ + el/~e_l/(~+l))/el/~ we can get 2et/(x+~2)/el/~,

usirig one order of assigning labels, and 2e -~/(" + x) using
a different order.

The last two examples are intended to show the
difficulties that a canonical and regular simplifier for
REX expressions has to surmount. In 3.3 we pointed out
that the existence of a regular and thus zero-equivalence
simplifier implies that a canonical algorithm for REX
expressions exists. The scheme proposed there for the
canonical simplifier is utterly inefficient. It also suffers
from the fact that the simplified expressions are not
described by some simple pattern. For example, the
simplified form of 1 might be quite different from " 1 "

in this scheme. The next algorithm produces expressions
which do satisfy general patterns. Such simplifiers are
exceedingly useful since they can help us determine
answers to global questions about an expression (e.g.
Is it a constant? Is it linear in x?).

In [5], Caviness,describes a canonical simplification
algorithm for a class of expressions related to REX
expressions. His expressions admit only one real vari-
able, say x, but no ~r, and no division at all. Because
division is not allowed, Caviness' expressions are ex-
ponential polynomials. By using a conjecture similar
to Brown's, Caviness shows how exponential poly-
nomials (other than pure polynomials) can be trans-
formed into the form P~(x)eS~ + P2(x)eS~ + . . . +

P k (x) e sk, where the & are distinct exponential poly-
nomials which are also in this form, and the P~ are
nonzero, canonically ordered polynomials.

In [24] we describe a canonical and regular simplifier
for first order exponential expressions (i.e. no nesting
of exponentials) which are REX expressions but do not
involve i or 7r. The proof of the regularity of our sim-
plification algorithm also depends on a conjecture
which is very similar to Brown's and Caviness' conjec-
tures.

The novel idea in our algorithm is to use a partial
fraction decomposition of the exponents. The left-hand
side of the equation below is in the usual canonical form
for rational functions and the right-hand side represents
a partial fraction expansion of it.

(x 5 - x n + 1)/(x 4 - x 2)

= x + (- I /x~) + [-½/ (x + 1)1 + ½ / (x - 1).

Communications August 1971
of Volume 14
the ACM Number 8

We require that the terms of the partial fraction de-
composition be linearly independent (over the rational
numbers) of each other. Such partial fraction decompo-
sitions lead to yet another canonical representation of
rational functions. The simplification algorithm breaks
up an exponential of a sum into a product of exponen-
tials which are replaced by labels in a manner similar
to that of Brown's algorithm.

Thus, eJ+x/e • is decomposed into e J e ~ / e x. With
proper relabeling and simplification of the resulting
rational expression we obtained the simplified result

2 e x .

3.3.2 Expressions Involving Exponentials and Loga-
rithms. The functions of the calculus include logarithms
as well as rational functions and exponentials. Therefore,
there is much interest in results admitting the logarithm
function. A zero-equivalence algorithm was obtained by
Richardson [28, 30] for a class of expressions which
differs from the REX expressions in that it involves no i,
only a single variable x, but allows the function log I x].
The logarithm function in addition to the exponential
function of REX expressions can be nested to any depth.

His algorithm for determining the equivalence in-
volves a reduct ion process in which one asks whether
progressively less complex expressions are equivalent
to 0. The algorithm is incomplete in that it relies, in
some cases, on knowing whether a reduced expression
composed entirely of constants is equal to 0. The re-
quirement o f the solution to this so-called "constant
problem" is similar to the need for conjectures in the
algorithms of 3.3.1. Richardson's algorithm is, further-
more, only applicable when the expression being ex-
amined is totally defined everywhere in the interval in
which zero-equivalence is to be determined. In essence,
this requirement implies that no subexpression is un-
bounded in value at some finite point on the interval in
question.

Richardson's measure of the complexity of an ex-
pression is very lexicographic in nature and relies on
very little knowledge of the algebraic properties of the
functions involved. For example, e '~ is considered more
complex than e • because of the greater depth of nesting
of the exponential function, and (e~) ~ is more complex
than e x because of its higher degree. The complexity
measure does not presume that e 2x and (ex) 2 are alge-
braically related. In fact, it does not matter very much
which of these two expressions is considered more
complex as long as the ranking is used consistently.

The reduction procedure of' the algorithm assumes
that the equivalence problem for rational functions is
trivial. A more complex expression will force the
algorithm to generate subproblems which will either
end up as rational functions or constant problems.

Let us suppose that we wish to determine whether
an expression E is equivalent to 0. Let y be the most
complex exponential or logarithmic term in E. Let us
further suppose that y is a logarithmic term. By multi-
plying out denominators, expanding products of sums,
and collecting like terms, we can get a polynomial

expression E* in y of the form

E*: an(x)y" -t- a,~-l(x)y '~-1 -t- " '" -t- ao(x) ,

which is equivalent to 0 if and only if the original ex-
pression E is equivalent to 0. Since an(x) does not con-
tain y, it is less complex than E or E* and we can apply
the algorithm recursively in order to determine if it is
equivalent to 0. If a,~ is equivalent to 0 then since the
expression El ,

E l : an_l (x)y '~-1 -q- . . . -1- ao(x) ,

is of lower degree in y than E* and hence, less complex
than E*, we can test to check if it is equivalent to 0. If
it is, E* and therefore E are also equivalent to 0. If it is
not, E* and E are not equivalent to 0.

If a,~ is not equivalent to 0, divide E* by it resulting
in the expression E2.

E2: y" q- [a,~_a(x)/an(x)] y , -1 -k- " ." -k- a o (x) / a n (x) .

Now differentiate, resulting in an expression, say E3, of
the form

E3: n y " - l y ' + . . . + (a,ao' -- a o a , ') / a , 2,

E3 is of lower degree in y than E* since the derivative
of a logarithmic term is of lower complexity than the
term itself. (Note that this is essentially the only fact
we need to know about logarithms except for cases
where the constant problem arises.) If E3 is not equiv-
alent to 0, then E2 and therefore E* and E are not
equivalent to 0. If E3 is equivalent to 0, then E* is
equivalent to a constant multiple of a , . To complete
the algorithm we must determine if the constant is 0.
Thus the constant problem arises in Richardson's
algorithm. One could attempt to evaluate the expression
at a point as Oldehoeft does [26]. The situation here
is simpler than in Oldehoeft 's cases since if the function
is equivalent to a constant multiple of a, (which is not
0) we need not worry about accidental values of 0
arising in the evaluation. In many cases, it suffices to
know the exact value of the logarithmic terms at only
one or two points.

If the most complex term y is an exponential, then
Richardson's algorithm involves division by a0. Dif-
ferentiation will then yield a low order term equal to 0.
Since the derivative of yk is of degree k in y, the rest of
the derivative can be divided by y to yield an expression
similar to E3 which is of lower degree than E*.

At the heart of Richardson's reduction procedure is
the idea that through differentiation we can obtain ex-
pressions which can be transformed in such a way as to
yield simpler problems whose solution will determine
the answer to the original equivalence problem. It turns
out that this idea can be used to test expressions which
involve functions other than i exponentials and
logarithms.

In [25] it is shown that Richardson's algorithm can
be extended to accept functions defined by a differential
equation of the form y ' = P (x , y) , where P is a poly-
nomial in y. When P is linear in y the extension is

535 Communications August 1971
of Volume 14
the ACM Number 8

straightforward. P's which are quadratic in y are of
great importance in applied mathematics. Unfortunately,
when a function is defined by a quadratic P, then its
derivative is more complex than itself. Thus if we are
testing E(x, y (x)) for equivalence to 0, we shall usually
find that E' (x , y (x)) has a higher degree in y than E
does. If E ~ 0, then E ' ~ 0, and therefore, the greatest
common divisor of E and E' is also equivalent to 0.
Conversely if the gcd of E and E' is equivalent to 0, so
is E. Hence, we may use the result of the equivalence
test for the gcd. The gcd, however, may not be of lower
degree in y than E itself is. In such cases it must possess
the same degree in y as E does. Therefore, we may
properly speak of E dividing E' . Let us say that E ' / E =
Q(x, y). Therefore, integrating both sides

log E = f Q(x, y) ax + cl

E = C~exp (f Q(x , y) d x)

where 6"1, C2 are constants.
Exponentials usually cannot have a zero value. In

such cases E can have a zero value only if C2 is identi-
cally zero. This determination is another constant
problem of a special nature in that we are dealing with
a function that is either always 0 or never 0. An ex-
ponential can have a zero value when the argument goes
to -- ~ . Such cases would be disallowed by Richardson's
requirement that expressions be totally defined.

3.3.3 Roots of Polynomials. In [4], Caviness discusses
a class of expressions which is obtained from the
rational numbers, the variable x, the rational operations,
and the operation of exponentiating to a rational
number. The exponentiation in this class may not be
nested. The following expressions are in this class:

1/ (x ½ + x~), (4 -- x)a / (x ~ + 2)].

The expression (x + 3~)~ is not in this class because it
involves nested exponentiation by nonintegers. Caviness
shows that there exists a zero-equivalence simplification
algorithm fol this class of expressions. The algorithm
is not canonical. Furthermore, it is also very time-
consuming since it can easily force one to factor poly-
nomials (over the integers) having a high degree, and
factorization is still a very expensive operation.

Recently, Fateman [12] showed that factorization is
usually not necessary if we modify the meaning of a
radical expression. What Caviness means by a radical
expression such as x/x is a symbol which represents the
general root of a polynomial equation (i.e. y~ - x = 0).
That is, x /x can be either one of the roots normally
written as + x / x and - -x /x . Fateman's algorithm as-
sumes that the symbol x/x represents exactly one of the
roots, and that - x / x represents the other.

Fateman's algorithm, except for expressions in-
volving roots of -- 1, has the same property as Caviness',
namely the zero-equivalence property. Yet all he needs
to test is whether the integers and polynomials which
occur inside the radicals are relatively prime to each

536

other. He would decompose (x 2 - 1) ~ into (x - 1)t
(x + 1)~ if (x - I)~ or (x + 1)~ occurred elsewhere
in the expression. But (x 2 + 2)~ would be left unchanged
since no other simplified radical expression could
combine with it under the rational operations. In both
Caviness' and Fateman's algorithms the proof that the
simplification algorithm has the zero-equivalence prop-
erty is obtained without resorting to additional con-
jectures.

Fateman's algorithm can be made canonical (again
except for roots of - 1) by removing radicals from
denominators in quotients through a generalization of
the process of "rationalizing the denominator ." Thus
1/ (x + x/2) could be converted to (x - v /2) / (x 2 - 2)
in order to achieve a canonical form.

3.3.4 Unsolvability Results. The best-known negative
result in algebraic manipulation is a theorem by
Richardson [5, 28] that shows that there exists a class
of expressions E for which the zero-equivalence problem
is recursively unsolvable.

The starting point for most unsolvability results in
algebraic manipulation is Hilbert 's Tenth Problem. This
problem, also known as the Diophantine Problem, asks
whether there exists an algorithm for telling whether
polynomials in several variables with integer coefficients
have solutions which are integers. This problem has
been recently shown to be recursively unsolvable [21].

For any polynomial P(x l , x~ , • • • , xn), with integer
coefficients, we can reduce the question of whether P =
0 has integer solutions to whether the equation

• sin 2 7rxi + P2(xl , x2 , " " , x ,) = 0
i=1

has real solutions since each term sin27rxi forces x~ to
be an integer. By manipulating the equation above~
Richardson was able to show the existence of a set of
functions G~(x) derivable from any polynomial
P~(x~ x2, . . ' , x ,) such that it was recursively un-
solvable to decide whether G~(x) < 0 for some value
o f x .

At this point we have an undecidability result for the
class of expressions formed by the rational numbers
and ~-, the variable x, the operations of addition and
multiplication, and the sine function (which can be
nested). By adding the absolute value function to this
class, Richardson was able to modify the Gi(x) to F~(x)
such that the question "F¢(x) =-- 0?" could not be solved
recursively.

Richardson's unsolvability result is considered by
some people to be an important limit to theoretical
results in algebraic manipulation. On the other hand,
the generality of the extensions possible to Richardson's
zero-equivalence algorithm (see Section 3.3.2) give a
much more optimistic outlook. In fact, the unsolvability
problem may lie in Richardson's use of the absolute
value function. When one adds the absolute value func-
tion to a class of functions which forms a field (e.g. the
rational functions), then one introduces zero-divisors.
For example, (x q-- Ix I)(x - [x I) = 0, although

Communicat ions August 1971
of Volume 14
the ACM Number 8

nei ther fac tor is 0. The lesson which R i c h a r d s o n ' s re-
suits t aken together may ho ld for a lgebra ic m a n i p u l a t i o n
is tha t one should exercise great care in i n t roduc ing
funct ions o ther than the " n a t u r a l " ones which are solu-
t ions to different ial equa t ions , but tha t with these na tura l
funct ions: very powerfu l s impl i f ica t ion p rocedures are
possible.

4. Prospects for the Future

A l t h o u g h the field o f a lgebra ic man ipu l a t i on can
a l r eady c la im a number o f i m p o r t a n t advances in the
design o f a lgor i thms, and a significant number o f im-
po r t an t appl ica t ions , one canno t yet say tha t the field
has stabil ized. We have a l r eady witnessed the demise of
pure ly conservat ive systems. In the next few years we
may witness the demise o f pure ly l iberal systems. The
reason for the d imin i shed impor t ance o f such systems
is their inefficiency when c o m p a r e d to the a lgor i thms
provided in radical systems or subsystems. I t would not
be surpr is ing if many radica l systems mature into new
left systems when the res t r ic t ions of canonica l fo rms
become unbearable . This would leave the new left
systems with a single represen ta t ion , which is a com-
promise between the radica l and l ibera l representa t ions ,
and the cathol ic systems with their mul t ip le representa-
t ions. We believe tha t the theore t ic ians and the ma jo r
users will tend to gravi ta te to the new left systems, and
the systems designers to the ca thol ic ones.

We expect to see theore t ica l results a b o u t s implif ica-
t ion a lgor i thms encompass increas ingly larger classes o f
expressions. The genera l i ty o f the extensions which can
be made to R i c h a r d s o n ' s ze ro-equiva lence a lgo r i t hm
lead one to expect tha t in the next few years it m a y be
possible for a user to define a funct ion as a so lu t ion to
a different ial equa t ion and then e m p l o y tha t funct ion
and its s impl i f icat ion proper t ies i m m e d i a t e l y in a
ca lcula t ion .

One th ing tha t we do not expect is tha t the difficulties
o f using a lgebra ic m a n i p u l a t i o n systems will d i s appea r
comple te ly . Users will cont inue to compla in , and de-
signers will, we hope, cont inue to improve their crea-
t ions.

Acknowledgments. The au tho r wishes to acknowl-
edge useful cr i t ic ism of draf t s o f this pape r by B.F.
Caviness, C. Enge lman , R. J. F a t e m a n , J. P. G o lde n ,
W . A . Mar t in , L.P. Ro thsch i ld , and the edi tor .

References

5. Caviness, B.F. On canonical forms and simplification. J. ACM
17, 2 (Apr. 1970), 385-396.
6. Collins, G. PM, A system for polynomial manipulation.
Comm. ACM 9, 8 (Aug. 1966), 578-589.
7. Collins, G. The SAC-I system: An introduction and survey.
SYMSAM II, pp. 144-152.
8. Collins, G. Subresultant and reduced polynomial remainder
sequences. J. ACM 14, l (Jan. 1967), 128-142.
9. Engelman, C. The legacy of MATHLAB 68. SYMSAM II, pp.
29-41.
10. Engeli, M. User's manual for the formula manipulation
language SYMBAL. Computer Center, U. of Texas at Austin, 1968.
11. Fateman, R. The user-level semantic matching capability in
MACSYMA. Proc. 2nd. Syrup. on Symbolic and Algebraic
Manipulation, ACM Headquarters, New York, pp. 311-323.
12. Fateman, R. Essays in algebraic simplification. Ph.D. diss.,
Harvard U., Cambridge, Mass., 1971.
13. Fenichel, R. An on-line system for algebraic manipulation.
Ph.D. diss., Harvard U., Cambridge, Mass., 1966.
14. Griesmer, J.H., and Jenks, R.D. SCRATCHPAD/I : An interactive
facility for symbolic mathematics. SYMSAM II, pp. 42-48.
15. Hall, A.D. The ALTRAN system for rational function
manipulation--A survey. Comm. ACM 14, 8 (Aug. 1971), 517-521.
16. Hearn, A. REDUCE: A user-oriented interactive system for
algebraic simplification. In b~teractive Systems for Experimental
Applied Mathematics. Academic Press, New York, 1968, pp. 79-90.
17. Hearn, A. The Problem of Substitution. Proc. 1968 Summer
Inst. on Symbolic Math. Comput. raM, Cambridge, Mass., pp. 3-19.
18. Hearn, A. REDUCE 2: A system and language for algebraic
manipulation. Proc. 2nd Syrup. on Symbolic and Algebraic
Manipulation, ACM Headquarters, New York, pp. 12~-135.
19. Korsvold, K. An on-line algebraic simplification program.
Artif. Intell. Proj. Memo. no. 37, Stanford U., Stanford, Cal., Nov.
1965.
20. Martin, W., and Fateman, R. The MACSYMA system. SYMSAM
II, pp. 59-75.
21. Matijasevic, J.V. Enumerable sets are diophantine. Soviet
Math. Dokl., 11, 1970.
22. Minsky, M., and Papert, S. Perceptrons. MIT Press, Cambridge,
Mass., 1969.
23. Moses, J. Symbolic integration. Report MAc-TR-47, Project
MAC, MIT, Cambridge, Mass., Dec. 1967. (Available as
AD ~ 662-666, Clearinghouse, Springheld, Va. 2215 l.)
24. Moses, J. A canonical form for first order exponential
expressions. In preparation.
25. Moses, J., Rothschild, L.P., and Schroeppel, R. A
zero-equivalence algorithm for expressions formed by functions
definable by first order differential equations. In preparation.
26. Oldehoeft, A. Analysis of constructed mathematical responses
by numeric tests for equivalence. Proc. ACM 24th Nat. Conf., 1969,
ACM, New York, pp. 117-124.
27. Perils, A., et al. A definition of Formula Algol. Comput.
Center, Carnegie-Mellon U., Pittsburgh, Pa., Mar. 1966.
28. Richardson, D. Some unsolvable problems involving functions
of a real variable. Ph.D. diss., U. of Bristol, England, 1966.
29. Richardson, D. Some unsolvable problems involving
elementary functions of a real variable. J. Symb. Logic 33 (1968),
511-520.
30. Richardson, D. A solution of the identity problem for
integral exponential functions. Z. Math Logik u. Grundlagen Math,
to appear.
31. Simon, H. The Science of the Artificial. MIT Press, Cambridge,
Mass., 1969.
32. Tobey, R. Experience with FORMAC algorithm design. Comm.
ACMg, 8 (Aug. 1966), 589-597.
33. Tobey, R., et al. Automatic simplification in FORMAC. Proc.
AF!PS 1965 FJCC, Vol. 27, Pt. 1, Spartan Books, New York, pp.
37-57.

I. Abrahams, P.W. Application of LISP to sequence prediction.
Comm. ACMg, 8 (Aug. 1966), 551.
2. Brown, W.S., et al. The ALPAK system for non-numerical
algebra on a Digital Computer-II. Bell Sys. Tech. J. 43, 2 (Mar.
1964), 785-804.
3. Brown, W.S. Rational exponential expressions and a conjecture
concerning rr and e. Amer. Math. Monthly 76 (Jan. 1969), 28-34.
4. Caviness, B.F. On canonical forms and simplification. Ph.D.
diss., Carnegie-Mellon U., Pittsburgh, Pa., Aug. 1967.

537 Communications August 1971
of Volume 14
the ACM Number 8

