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Algebraic simplification is examined first from the 
point of view of a user who needs to comprehend a large 
expression, and second from the point of view of a 
designer who wants to construct a useful and efficient 
system. First we describe various techniques akin to 
substitution. These techniques can be used to decrease 
the size of  an expression and make it more intelligible to 
a user. Then we delineate the spectrum of approaches to 
the design of automatic simplification capabilities in an 
algebraic manipulation system. Systems are divided into 
five types. Each type provides different facilities for the 
manipulation and simplification of expressions. Finally 
we discuss some of the theoretical results related to 
algebraic simplification. We describe several positive 
results about the existence of powerful simplification 
algorithms and the number-theoretic conjectures on which 
they rely. Results about the nonexistence of algorithms 
for certain classes of  expressions are included. 
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1. Introduction 

Simplification is the most pervasive process in 
algebraic manipulation. It is also the most controversial. 
Much of the controversy is due to the difference between 
the desires of a user and those of a system designer. 
The user wants expressions which he can comprehend. 
The designer wants expressions which can be manipu- 
lated with great ease and efficiency. Users tolerate, and 
in fact prefer, a certain amount of redundancy in an 
answer. For  example, they usually desire to see expres- 
sions containing the twelve trigonometric and hyperbolic 
functions. Designers would prefer giving a user only 
sines and cosines or just exponentials with complex 
arguments. 

There is one property of simplification about which 
both users and designers can agree. That is, that simpli- 
fication changes only the form or representation of an 
expression, not its value. Thus an ideal, but not very 
helpful, way to describe simplification is that it is the 
process which transforms expressions into a form on 
which the remaining steps of a computation can be most 
efficiently performed. 

The problem of representation for algebraic expres- 
sions is especially acute because there are so many 
equivalent ways to represent an expression. Frequently 
one of these equivalent forms is much more useful than 
another, and, just as frequently, it is a nontrivial 
problem to recognize the equivalence. For  example, it 
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is rare that we do not want to recognize that an expres- 
sion is equivalent to 0, but many of us have difficulty 
in recognizing the following identities: 

( 2 ; + 4 ~ )  3 -  6(2 ~ + 4 ~ )  - 6 = 0 

or 

log tan (½x + ~Tr) - sinh - t  tan x = 0. 

Consider how much more difficult the problems become 
when we deal with expressions which are several pages 
long. Yet expressions of such size are quite common in 
algebraic manipulation! An additional difficulty is that 
the usual manipulatory algorithms can easily magnify 
a bad choice of representation. For  example, the deriva- 
tive of  a product of  n factors can be a sum of n terms 
each of n or more factors. 

Another  issue which arises in discussions of simpli- 
fication is related to the local or global nature of the 
problem. If  expression A is deemed simpler than its 
equivalent expression B in one context, then is A to be 
considered simpler than B in every context? A perfectly 
strict answer is no. For  example, xT/(x 12 + 1) is a more 
compact  representation of the rational function it 
represents than ~(4x3)x4/[(x4) 3 + I]. The former is 
usually easier to manipulate and comprehend. However, 
when integrating, the latter expression indicates a pat- 
tern which suggests the substitution y = x 4 which 
yields 

f ¼ Y d y ,  
y ~ +  1 

a much simpler integration problem than that which is 
posed by the first expression. Designers would prefer a 
system in which the simplification steps are the same 
in every context. Users clearly would prefer a system 
which could take contextual information into account 
in deriving a simplified expression. 

A related issue regarding simplification is the extent 
to which the concept can be formalized. The point that 
we made above is that the simplest form of an expres- 
sion depends on one's goals or, in other words, on the 
context. One would be hard put to formalize the goals 
of all potential users. However, we can obtain theoretical 
results for simplification algorithms which have useful 
properties. One such property is that the algorithm 
simplifies to zero any expression equivalent to 0. A 
stronger property is that the simplifier reduces all 
equivalent expressions to a single (canonical) expression. 

Historically, simplification was required in algebraic 
manipulation systems because the manipulatory algo- 
rithms produced sloppy results. For  example, the un- 
simplified result of  differentiating ax + xe x' with respect 
to x is an expression such as 

O.x + a. 1 + 1.e ~ + x . e ~ . 2 . x .  

"Simplifying the derivative above would yield an expres- 
sion like a q- e x2 + 2x~e ~.  

With the ever growing use of algebraic manipulation, 
it has become increasingly apparent  that simplification 
plays a much more complex role in the way one solves 
problems with an algebraic manipulation system. In the 
remainder of this paper we shall discuss some capabili- 
ties users wish to see in an algebraic manipulation 
system, and the variety of simplification facilities cur- 
rently offered by such systems. The paper ends by dis- 
cussing a number  of formalizations of the concept of  
simplification and the algorithms corresponding to such 
formalizations. 

2. Simpli f icat ion for the S a k e  of  Comprehens ion- - the  
Needs  o f  Users 

One of the most common complaints of users of 
algebraic manipulat ion systems is that the expressions 
obtained as results of a calculation are incomprehensible 
and therefore essentially useless. In order to understand 
the importance of such a complaint  we have to differ- 
entiate between two major  classes of  users. Some users 
are only interested in the value of a calculation. For  
example, those who use symbolic differentiation as a 
step in a numerical calculation do not care very much 
about  the form of the symbolic derivative, t For  such 
users the problem of simplification reduces to keeping 
the intermediate expressions in a calculation in a form 
which optimizes the use of space and time in the calcula- 
tion. 

The second class of  users includes those who need 
to make "physical sense" of  an expression. Perhaps 
such a user is studying a process and wants to learn 
about  some property of  the process by manipulating a 
mathematical  model of it. For  example, he might be 
interested in the manner  in which the value of an expres- 
sion varies as one of its variables increases in value. 

It  should be clear that a user is likely to comprehend 
and to answer questions about  a small expression a lot 
better than about  an equivalent but larger one. Thus a 
goal of  simplification should be to produce small ex- 
pressions. In fact, most  of  the usual simplification 
transformations such as collecting terms in sums (e.g. 
x + 2x ~ 3x) produce smaller expressions. Moreover,  
t ransformations which produce larger expressions (e.g. 
expanding integral powers of  sums [(x + 1) ~ ~ x 3 -Jr 

Such users should care a little about the form of the derivative be- 
cause some forms of expressions yield a smaller round-off error in a 
numerical calculation than other forms. 
2 An exception to this rule is represented by programs that recognize 
the next number in a sequence [1 ]. Such programs would, in fact, 
recognize the pattern in the former expression. 
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3x 2 + 3x + 1)] are controversial. Many systems will 
employ such transformations only if the user specifically 
demands them. 

Of  course the prevalence in algebraic manipulation 
systems of simplification transformations which produce 
smaller expressions is due mostly to the fact that small 
expressions are usually easier to manipulate than larger 
ones. This is an instance where the needs of simplifica- 
tion for the sake of improved comprehension and 
simplification for the sake of efficient manipulation 
coincide. 

The requirements of simplification for the sake of 
comprehension are, however, more subtle than we have 
just  indicated. It is not so much the small size of the 
expression which aids in comprehension, as the small 
size of a description of the expression. For  example, 

1 + 2x + 3x 2 + 4x 3 + . . .  + 1 lx 1° 

is less complex for many purposes than 

1 + 3x + 4x 2 + x 3 -- 9x 4 .+ 5x 5 + x e -q- 2x 7 

because one can supply a small description of the former, 
[i.e. ~°_-0 (i + l)x~], but not of the latter. The way 
one usually obtains a small description is by recognizing 
a repeated pattern in an expression. Unfortunately, 
computer  programs nowadays are not as good as 
humans at recognizing useful patterns. 2 

A major  reason for computers  not being as good as 
human users in simplifying an expression is that they 
lack knowledge of the context in which the expression 
was derived. To a physicist subexpressions like rn& con- 
tain a good deal of information not apparent  to an 
algebraic manipulation system. For  example, a physicist 
might be tempted to substitute E for m &  in order to 
reduce the size of the expression without destroying its 
information content to him. In fact, the major  technique 
for simplifying large expressions is the substitution of 
small expressions for large subexpressions which either 
occur frequently or possess some meaning. We shall 
examine this technique in Section 2.1. 

2.1 Substitution as an Aid to Comprehension 
Many symbolic calculations take the following form: 

One starts with some equations such as 

y = g ( x ) ,  

z = h ( x ) ,  

f = x 2 + y~ + &. 

and expressions such as 
5 

E: ~ c i x  i .  
~ 0  

Later one substitutes such equations and expressions 
into another expression such as [(Of/Ox) 2 + 2 E 2 ] / f  3 . 

Then one attempts to simplify the resulting expression. 
In this section we are interested in the process of making 
intelligible large expressions such as the one which 

Fig. 1 

A B  M N R S  H I  
C D O P T U J K  
M N A B H 1  R S  
O P C D J K T U  
R S  H I  A B M N  
T U J K C D O P  
H I  R S  M N A B  
J K T U O P C D  

Letus call the array I AB re I r, CO [ a, the array ] MN oP re, the arrayl ns 
and the array I Jh~l h. Let us call the array I ,~'~l w, and the array 
I~l .r. Then the entire array is simply I~',~ 1. While the original 
structure consisted of 64 symbols, it requires only 35 to write down 
its description: 

s =17~1 

R B  H I  
~ ~ J K  

would result if we performed the substitutions and 
carried out the derivatives and expansions in the ex- 
pression above. 

Frequently the process of simplifying large expres- 
sions involves a reversal of the process which led to the 
expression above. That  is, one substitutes small expres- 
sions (usually literals) for large subexpressions which 
occur more than once in the expression. The literals 
being substituted into the expression act as names or 
labels for the expressions that they replace. This is the 
role o f f ,  y, and z in the expression above. 

An artificial example which points out the value of 
substitution to the comprehension of an expression 
occurs in [31]. The example shows how to obtain a 
compact  description of the matrix in Figure 1. We ob- 
tain a hierarchical description by recognizing patterns 
in the matrix and patterns in the matrix of literals that  
we substituted, etc. We finally reduce the 64 characters 
in the original matrix to 35 characters in the final matrix 
and all the associated equations. However, the hier- 
archical description seems to make the simplified result 
much clearer than is implied by the ratio 35/64. 

The process of finding good subexpressions to re- 
place usually involves some trial and error. It  is useful 
to replace subexpressions which have some meaning in 
the context of the problem. In such cases we need not  
require that the subexpression being replaced occur more 
than once in the expression. Beyond such generalities, 
there does not seem to be much one can say at present 
which is frequently useful in the "massaging" process 
for large expressions. We should note that one often 
combines substitution with other manipulations (e.g. 
carrying out expansions or differentiations which have 
been delayed). 

A technical problem arises when one makes substi- 
tutions for expressions other than atomic ones. Consider 
the problem of substituting a for x y  2 in the expression 
x2y 3. Some possible results of this substitution are 
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(1) x2~, (2) axy, and (3) a2/y. One cannot say that 
there is a "correct"  answer, because what is appropriate 
in one context need not be appropriate in another. Yet, 
no system, until recently, gave the user much choice in 
the result of substitution. The REDUCE system of Hearn 
[16, 17] has a good deal of machinery for making sub- 
stitutions, but it does not give the user much control 
over the effects of its substitutions. Fateman [12, 20] 
has recently arrived at the following analysis of the 
problem. For  simplicity, we shall make the analysis for 
polynomials, but it can be easily extended to more com- 
plex expressions. 

Let us suppose we are trying to substitute A for B 
in C. We shall consider C to be represented as 

~7=0 ~ n  ~. 

Thus the substitution will yield ~ = 0  a~A i. This 
representation of C is nonunique. We can make the 
representation precise by imposing constraints on the 
coefficients c~. Let us assume that the variables in B 
are ranked in some way. Fateman's  substitution pro- 
grams usually provide that the degree of the main 
variable of B is lower in each a~ than in B itself. In 
addition, one can restrict the coefficients (1) to not 
contain a sum, (2) to be polynomials (and not rational), 
and (3) to have lower degree in all of the variables of B 
than the degree of those variables in B. 

By varying these and other conditions, and by 
modifying the ranking of the variables, one can get a 
variety of results. One can then choose that result which 
seems most useful in the computation. 

Some examples of substitutions made with Fate- 
man's routines are given in Figure 2. The ability of 
Fateman's  routines to obtain the results in the last four 
examples is due to the technique of continually dividing 
C by B. The last two examples indicate how this sub- 
stitution mechanism provides for the application of the 
oft-discussed transformation sin2(x) + cos2(x) ~ 1. 

3. Simplification for the Sake of Manipulat ion--What  
Designers Provide 

3.1 The Politics of  Simplification 
Simplification is such a central issue in algebraic 

manipulation that when a designer has decided how he 
will represent expressions, what changes of representa- 
tion his system will perform automatically, which of these 
automatic transformations he will let the user override 
and modify, and what additional facilities for simplify- 
ing expressions his system will have, there are few major 
decisions remaining. As a result, one can classify 
algebraic manipulation systems by their approaches to 
simplification. 

Four  years ago, when we last surveyed the scene 
[23], we classified algebraic manipulation systems into 
three categories: conservatives, liberals, and radicals. In 

the meantime, there has been a slight change in the 
characteristics of some systems, and the characteristics 
of other systems have stabilized sufficiently so that we 
now claim the entry of two new parties, namely, the 
new left and the catholics. 

The classification that we make of systems is based 
on a single cri ter ion--the degree to which a system 
insists on making a change in the representation of an 
expression as provided by a user. A system which insists 
on radically altering the form of an expression in order 
to get it into its internal form is called a radical one in 
our scheme. A system which is so unwilling to make an 
inappropriate transformation that it essentially forces a 
user to program his own simplification rules is called a 
conservative system. A system which will make certain 
transformations automatically, but will leave others to 
the discretion of a user, is called a liberal system. The 
new left is mainly composed of variations of old radical 
systems which give certain additional choices to a user. 
Designers of catholic systems see the merit of each of 
the other approaches for some contexts. They design 
systems which offer several subsystems using different 
simplification techniques, and let the user switch among 
them as he pleases. 

3.1.1 The Radicals. Radical systems can handle a 
single, well-defined class of  expressions (e.g. poly- 
nomials, rational functions, truncated power series, 
truncated Poisson series). The expressions in this class 
are represented in a canonical form. That  is, any two 
equivalent expressions in the class are represented 
identically, internally. This means that the system 
stands ready to make a major change in the representa- 
tion of  an expression as written by a user in order to 
get that expression into the internal canonical  form. 
The advantage of  this approach is that the task of  the 
manipulatory algorithms is well defined and lends itself 
to efficient implementation. In fact, most of  the major 
advances in algorithm design in the field of  algebraic 
manipulation such as in the greatest common divisor 
algorithm, polynomial factorization, and integration 
have assumed expressions represented in canonical 
f o r m .  

Radical systems do not appear to have specialized 
simplification machinery since the process of  generating 
expressions in canonical form, which is automatically 

Fig. 2 

Substi tut ion of  .4 for B in C 

Alternative 
.4 B C results 

--1 
1 
1 

!xy~ 

2x + 3y 

x + y  

32 -~- C 2 

S 2 -~ C 2 

x2y 3 

3 x + 4 y +  1 

5x + by + 1 
i 4 +  1 
s 4 + 2s2c 2 + c 4 
(s~- s)c-~ 

axy,  
a2/y, 
x~y  ~ 

3x + 4 y  + 1, 
~x + ~a + 1, 
- ~ y  + ~a + 1 
a b +  1 
2 
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employed by the manipulatory algorithms (e.g. addition, 
multiplication, differentiation), is akin to simplification. 
An expression written in its canonical form is considered 
simplified, once and for all time. Any attempt to allow 
the user to modify the representation of an expression 
for his problem will likely cause a decrease in the 
efficiency of the manipulatory algorithms and is there- 
fore eschewed or highly discouraged by designers of 
radical systems. 

Excellent examples of radical systems are polynomial 
manipulation systems. One canonical representation of  
polynomials is the recursive representation used in 
Collins' PM and SAC-I systems [6, 7]. One assumes a 
ranking of the variables such as x > y > z. The poly- 
nomial is considered as a polynomial in the major 
variable with coefficients which are polynomials in the 
other variables and which are themselves represented 
in this recursive form. Thus 

3x2y 2 - 2x2yz 3 -9 5x2z 2 -9 4x - 6y3z -9 y3 -9 3 f  

-9 z4 -9 1 

would be represented as 

(3y 2 -- (2z3)y -9 5z~)x 2 -9 (4)x -9 ((--6z -9 1)y a -9 3y 2 
+ z 4 +  1). 

The other major representation of polynomials, 
popularized in the ALPAK system of Brown [2], is the 
expanded representation. The first polynomial is written 
in expanded form. 

Situations in which there is widespread disagreement 
with the radical approach usually concern expressions 
which contain powers of sums. The radical systems 
would automatically expand such expressions in order 
to put them into the canonical form. Other designers 
would complain that (x -9 1) l°°° should almost never 
be expanded. For  example, the integral of (x -9 1) 1°°° 
with respect to x is trivially found if the integrand is not 
expanded. However, computing the integral of the ex- 
panded expression requires more time and space, and 
the final result appears atrocious to the human eye un- 
less the pattern is recognized. 

3.1.2 The New Left. The new left arose in response 
to some of the difficulties experienced with radical sys- 
tems such as those caused by the automatic expansion 
of  expressions. A new left system is usually a rational 
function system which does not necessarily expand prod- 
ucts or integer powers of sums. A new left system will 
have all the usual machinery of a radical system, but the 
algorithms will be generalized to handle unexpanded 
expressions. The new left thus sacrifices canonicalness 
and some of the well-definedness of the manipulatory 
algorithms for the ability to solve some problems more 
efficiently than is possible in a radical system. The user 
of a new left system can specify when expansion will 
take place, a facility which is, of  course, not present in 
a radical system. 

Systems which allow unexpanded terms in an ex- 
pression are Hearn's  latest version of REDUCE [18], and 
the latest version of ALTRAN [15]. 

A new left system can usually handle a wide variety 
of expressions with greater ease, though with less power, 
than a radical system using a canonical form. The idea 
is to use labels for nonrational expressions. Thus xe  • -9 
x 2 sin x might be rewritten as x y  -9 x2z, where y = e Z, 
and z = sin x. The expression (e 2x + e~)/e • would 
probably be expressed as 

(y + z ) / z ,  y = e 2~, z = e~, 

since no attempt probably would be made to write the 
expression in canonical form. 

3.1.3 The Liberals. Liberal systems rely on a very 
general representation of expressions and use simplifica- 
tion transformations which are close in spirit to the ones 
used in paper-and-pencil calculations. Liberal simpli- 
fiers perform the usual simplifications of collecting terms 
in sums and exponents in products, applying the rules 
regarding 0 and 1, and removing redundant operators 
(e.g. a + ( b + c )  --~ a + b + c). Frequently such systems 
will also know simplification rules for certain arguments 
of  nonrational functions. Thus sin 27r might simplify 
to 0, e 2~°g ~+x might simplify to f e L  and cos (arcsin x) 
to ( 1 - x  2 )~. 

Liberal systems differ from radical and new left 
systems in several important  ways. 

(1) Expansions are carried out only if the user so de- 
mands (new left systems, of course, offer this feature 
also). 
(2) Sums of  quotients are never put over a common 
denominator unless the user forces such a transforma- 
tion, but even if they are, the greatest common divisor 
cancellations are likely to be missed. 
(3) Expressions can usually be represented in "un- 
simplified" form. That  is, 1-sin(x) -9 0.cos(x)  can 
be represented in such systems. This allows patterns 
to be represented. Most manipulatory algorithms will, 
however, require that all their arguments be simplified, 
thus destroying the patterns. 
(4) Nonrational  terms can be expressed with great 
ease. Terms such as e ~, x!, and ~ = o  c~x ~ would be 
explicitly present in the expression, and would not  b6 
replaced by a label whenever they occurred. 
(5) The representation is local in the sense that a 
term sin(x) appearing in one part of the expression 
can be modified without affecting a sin(x) appearing 
in another part of the expression. 

The major disadvantage a liberal system has relative 
to a radical or new left system is its inefficiency. The 
representation of information in a liberal system might 
require two or three times as much space as in a radical 
system, and manipulations can be a factor of ten slower 
(of course such figures might increase or decrease 

depending on the situation). 
The advantage claimed for liberal systems is that 

one can express problems more naturally in them than 
in radical or new left systems. Examples of liberal sys- 
tems are FORMAC [33], and most LisP-based algebraic 
simplification programs such as Korsvold's  [19]. 
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3.1.4 The Conservatives. Designers of conservative 
systems claim that one cannot design simplification rules 
which will be best for all occasions. Therefore conserv- 
ative systems provide little automatic simplification 
capabilities. Rather, they provide machinery whereby a 
user can build his own simplifier and change it when 
necessary. A simplifier written in such a way is far 
slower than a liberal simplifier, and this fact presents a 
distinct disadvantage for conservative systems. In fact, 
one can point to only two major conservative systems, 
Fenichel's FAMOUS [13] and FORMULA ALGOL [27]. 

The importance of conservative systems lies in the 
philosophy they represent, which is most clearly given 
by Fenichel [13], and in the technique which they cham- 
pion of using rules and advice to describe simplifica- 
tion transformations. Their philosophy presents an 
indictment of all the other systems which perform 
many simplification transformations automatically, 
without seriously considering the context. Designers of 
conservative systems emphasize that the simplified 
form of an expression is determined by context. They 
will point to situations where even the most obvious 

I 

transformations O.x ~ 0 and 1.x ~ x will destroy 
useful information as in the expression 

O. sin x -b 1-cos x --b 2-tan x q-- 3. cot x 
+ 4 - s e c x  + 5 . c scx .  

Therefore, they claim that one must be able to tune the 
system to the particular nature of the problem. The 
preferred technique of " tuning" is based on the theo- 
retical concept of Markov algorithms. In a Markov 
algorithm one is given an ordered set of rules to apply 
to an expression. Each rule has the form: 

Pattern ~ Replacement. 

For  example, one such rule applied to algebraic ex- 
pressions might be A. X -{- B. X ~ (A -q-- B). X. 

To make such a rule correspond to the usual notion 
of "collecting like terms," one might want to restrict A 
and B to be numbers, while X could represent any prod- 
uct of factors other than numbers. The rule just given 
does not  necessarily yield a simplified result in cases 
such as 2 .X- t -  ( -  1).X--~ 1.X. One generally applies 
a whole set of rules to a given expression, and when 
there is no rule which is applicable then the algorithm 
is complete. 

Such rules are most appropriate in indicating local 
transformations on an expression. 3 One would not wish 
to write a factoring program as a Markov algorithm. 
Conservative systems have tended to model liberal 
systems rather than radical ones, since the latter spe- 
cialize in global transformations on expressions. 

Several designers have added to their systems a 
capacity for writing Markov algorithms, thus allowing 
their systems to take on various degrees of conserva- 
tism. The main use of rules in such systems has been 
to add new simplification transformations [e.g. cos 

nr  ~ (-- 1)'~], rather than to override old transforma- 
tions. Thus a user of REDUCE can define the simpli- 
fication rules relating to general exponentiation (e.g. 
x ~ . x  z --~ x ~ + z ) ,  although he cannot  override x 0 --~ 1. 
Korsvold's simplifier and MACSYMA'S pattern matching 
subsystem [11] also allow one to define simplification 
rules. The latter allows one to override many of the 
built-in rules. It also provides for the compilation of 
new rules which should yield a relatively efficient 
simplifier. 

3.1.5 The Catholics. Catholic systems use more than 
one representation for expressions, and have more titan 
one approach to simplification. The basic idea under- 
lying catholicism is that if one technique does not work, 
another might, and the user should be able to switch 
from one representation and its related simplification 
facilities to another with ease. A catholic system might 
use a liberal simplifier for most calculations and have 
a radical subsystem in reserve for performing special 
calculations such as combining quotients, solving linear 
equations with rational coefficients , and factorization. 
MATHLAB [9] is best described as a catholic system. The 
MACSYMA system [20] goes further in that it allows the 
user to manipulate entirely with a radical rational func- 
tion subsystem, as well as with a liberal-radical com- 
bination as just described. In addition, MACSYMA, as 
pointed out in 3.1.4, has a rule-defining facility which 
allows it to closely approximate a conservative system. 
The SCRATCHPAD system [14] is a conglomerate made 
up of  several LisP-based systems. It has a total of  four 
simplifiers. 

The designers of catholic systems emphasize the 
ability to solve a wide range of  problems. They would 
like to give a user the ease of  working with a liberal 
system, the efficiency and power of  a radical system, and 
the attention to context of  a conservative system. The 
disadvantage of  a catholic organization is its size. A 
catholic system is necessarily larger than any other type 
of  system. The variety of  the services provided by the 
system may force users to learn a larger number of  con- 
ventions than in other systems. A catholic designer may 
also impose a number of  system-wide conventions (e.g. 
on the data representation) which would not be present 
in a smaller system. Such conventions might slow down 
all of  the component  systems. 

3.2 Intermediate Expression Swell 
Users of numerical analysis programs have learned 

to anticipate problems due to round-off errors. Users 
of symbolic manipulation programs have encountered 

3 The author begs for forgiveness of the reader for not defining 
"local." That concept tends to be as context dependent as the con- 
cept of simplification. However, see [22]. 
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a corresponding problem in the tremendous growth of 
intermediate expressions in some calculations. Such 
growth has caused many calculations to be aborted be- 
cause the expressions filled the available computer  
memory. Tobey has described this phenomenon with the 
colorful phrase "intermediate expression swell" [32]. 
In many cases the final result of a symbolic calculation 
is quite small, but in order to get that result one generates 
very large intermediate expressions. For  example, the 
eigenvalue of a matrix with polynomial entries can be 
as simple as a single number. However, in order to ob- 
tain that number, one is forced to factor a polynomial 
having polynomials as coefficients. These coefficients 
might be obtained from the determinant of the matrix, 
which can be several pages long. 

In some problems one can apply one's knowledge of 
subsequent steps in a calculation in order to keep ex- 
pressions in a form which will maximize utilization of 
space and time. At the heart of Collins' improvement 
to the Euclidean GCO algorithm [81 was the idea that 
one could predict how certain terms were automatically 
introduced into the intermediate expressions, and there- 
fore these terms could be canceled without affecting 
the final result. Before the appearance of this algorithm, 
it was thought that the size of the coefficients in the 
intermediate steps of the algorithm had to grow ex- 
ponentially. Collins showed that they need only grow 
linearly ! 

Of course, results such as Collins' would not be ex- 
pected from the average user; however, improvements 
of a similar nature can be made in many applications of 
algebraic manipulation. For  example, consider y = 
)--~7=1 x ~, which is an approximation for x / (1  - x).  
Suppose you wanted ~ 0  J .  The straightforward 
application of expansion in the latter sum would yield 
a polynomial of degree n 2. However, since y is only 
accurate to degree n, all powers of x greater than n are 
worthless. What is called for is a truncation in the 
expansion of powers greater than n. Systems which 
allow the user to specify truncation (e.g. by declaring 
x m = 0 for m > n) can probably save factors of 100 
or 1000 in speed for n = 20 [10]. 

3.3 Canonical Simplifiers and Theoretical Results 
In this section we shall discuss theoretical results 

related to algebraic simplification. Almost all of the 
algorithms we shall describe are incomplete in the sense 
that they depend on as yet unproved conjectures about 
expressions involving constants. For  example, the con- 
jecture by Brown [3] has, as a special case, the statement 
that e + ~- is not  a rational number. That  statement is 
almost certainly true, but no proof of it exists, and 
certainly none exists of the full conjecture. Even if the 
conjectures were false, the average user will probably 
never obtain incorrect results from these algorithms. 

All of the results deal with well-defined classes of 
expressions which are extensions of polynomials or 
rational functions. Some deal with exponentials, others 
with both exponentials and logarithms, and still others 

with roots of polynomials. We shall also discuss a 
negative result, due to Richardson, which says that when 
one deals with expressions involving the sine and 
absolute value functions, then one cannot, in general, 
tell whether such expressions are equivalent to zero. 

The simplification algorithms fall into three cate- 
gories: zero-equivalence, canonical, and regular. Zero- 
equivalence algorithms can determine whether an ex- 
pression in a given class is equivalent to 0. Such algo- 
rithms need not simplify a nonzero expression in any 
way. Canonical simplification algorithms transform all 
equivalent expressions in a given class into the same 
(canonical) form. Canonical simplifiers are zero- 
equivalence algorithms. It is an elementary but surpris- 
ing fact that if a class of expressions E possesses a zero- 
equivalence algorithm it also possesses a canonical 
simplification algorithm. We assume that there exists an 
algorithm which generates a sequence of members of E 
in which any given member of E can be found, in a 
finite number of steps. In order to obtain the canonical 
form for an expression f in E, we generate members of 
E until one is shown to be equivalent to f by the zero- 
equivalence algorithm. This argument points out a weak- 
ness in the definition of canonical forms-- the  canonical 
form need not be a simpler expression than the original 
expression. 

Regular simplification algorithms arise when one 
deals with transcendental functions (e.g. exp, log). A 
regular algorithm guarantees that all nonrational terms 
in the simplified expression are algebraically inde- 
pendent. A set of expressions is algebraically inde- 
pendent (over the rational numbers) if in its elements 
there exists no nontrivial polynomial with rational 
number coefficients which is equivalent to 0. Regular 
algorithms are zero-equivalence algorithms, but need 
not be canonical ones. Likewise, canonical algorithms 
need not be regular. 

3.3.1 Simplification Algorithms for Expressions with 
Nested Exponentials. In [3] Brown describes a regular 
simplification algorithm for a class of  expressions he 
calls Rational Exponential (REX) expressions. These 
REX expressions are obtained recursively from the 
rational numbers, i, and rr, and the variables 
x l ,  x2, • • • , xn,  by the rational operations of  addition, 
subtraction, multiplication, and division, and by forming 
exponentials of existing REX. Thus the expression 

et'~/(eX+l)l/(e 5x _1_ 3e 2x + xe 4e1+1) 

is a REX expression if we agree to write x for Xl when 
only one variable occurs. Brown's algorithm makes use 
of the technique frequently mentioned in this paper of 
substituting labels for subexpressions (in this case, 
exponentials) in order to reduce a REX expression to a 
rational expression in the variables and the labels. The 
major simplification work in the algorithm occurs when 
the resulting rational expression is transformed into a 
canonical form. We shall see, however, that Brown's 
algorithm is not canonical. It should be noted that 
since the constants i and ~- are included, the REX expres- 
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sions contain the trigonometric and hyperbolic func- 
tions in exponential form. 

In generating labels for the algorithm one must pay 
great attention not to allow algebraically dependent 
exponentials to be assigned to different labels. For  
example, e • and e 2~ are algebraically dependent since 
(e~) 2 -- e ~ = 0. Likewise, e ~, e ~2, and e ~+~2 taken 
together are algebraically dependent. The labeling 
scheme must be such that if we assign y to eL then 
e 2~ is assigned y2. 

The algorithm proceeds by replacing innermost ex- 
ponentials in the expression by labels, if such exponen- 
tials are not algebraically dependent on previously 
replaced exponentials. The algebraic dependency is 
determined with the help of the conjecture by testing 
whether the argument (of the exponential function) 
being examined is linearly dependent on previous argu- 
ments. The following is a simple example of the pro- 
cedure, and incidentally shows its simplifying power. 

Suppose we are given the REX expression (e • -Jr x ) /  

(e 2. + 2xe  • + x2). Traversing the numerator from left 
to right, we first encounter e *. Let q~ = x and rl = 
eq  = e x. Thus our first label is r l .  By substituting it 
into the expression we obtain (rl + x ) / ( e  2~ + 2xrl  + x2). 

By treating e 2~ as an independent variable in the 
expression above, we can try for a simplification by 
determining the greatest, common divisor of both 
numerator and denominator.  

That  attempt is unsuccessful in reducing the expres- 
sion and we continue generating labels. We next en- 
counter the exponential e ~. Let q2 = 2x, r2 = eq2 = 
e% Now check to see if a linear dependence exists 
between q~ and q2 (and also with irr, it turns out). Such 
a relation does exist, since 2ql - q2 = 0. Therefore, 
redefine r~ = rt 2 and by substitution obtain (r~ + x ) /  

(rl ~ + 2xra + x2). Simplifying this as a rational function 
reduces it to 1/(r l  + x ) .  

Since no more exponentials are to be found, replace 
the labels by the exponentials. The result is 1/(e • + x), 
which is indeed simpler than the expression we had 
originally. 

Brown's conjecture is that if {qx, q2, " .  , q~, i~-} is 
linearly independent over the rational numbers, 
{e% e% . . .  , eqk, Xl , X2 , " '" , X ,  , r} is algebraically 
independent over the rational numbers. Using the con- 
jecture, Brown can easily prove that the only simplified 
REX expression equivalent to 0 is 0 itself. Note that since 
1 and irr are linearly independent, the conjecture states 
that e I and r are algebraically independent, a statement 
which is stronger than the currently unproved statement 
"e + rr is not a rational number."  

An important  aspect of the algorithm is the retracing 
of steps one must go through in some cases. Consider 
(e 2~ + e=)/e ~. Let qx = 2x, rl = e ql = e 2". Now q2 = 
x, r2 = e * ,andq2  = ½ q , . W e c a n n o t l e t r 2  = r~½ since 
we want to obtain rational results. So we redefine rx as 
r22 and obtain (r22 + r2)/r., = r2 + 1 = e ~ + 1. 

Brown's algorithm is not canonical because the 
algorithm does not make an optimal choice for labels. 
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Consider ex+x2/e x. Let ql = x + x 2, rl = e ~+~', q2 = 
x, r2 = e ~. Note that {ql, q~, iv} is linearly inde- 
pendent over the rational numbers. Thus {rl, r2, x, ~} 
is algebraically independent by the conjecture. Further- 
more, rl/r2 is simplified as a rational expression. Hence, 
the simplified result is e x + ~2/e~, which differs from the 
equivalent expression e ~' which is also simplified. So 
the algorithm is not canonical. 

Brown's algorithm produces different results when 
the expressions are reordered. In 

(el/(~ +~2~ + el/~e_l/(~+l))/el/~ we can get 2et/(x+~2)/el/~, 

usirig one order of  assigning labels, and 2e -~/(" + x) using 
a different order. 

The last two examples are intended to show the 
difficulties that a canonical and regular simplifier for 
REX expressions has to surmount. In 3.3 we pointed out 
that the existence of a regular and thus zero-equivalence 
simplifier implies that a canonical algorithm for REX 
expressions exists. The scheme proposed there for the 
canonical simplifier is utterly inefficient. It also suffers 
from the fact that the simplified expressions are not 
described by some simple pattern. For  example, the 
simplified form of 1 might be quite different from " 1 "  

in this scheme. The next algorithm produces expressions 
which do satisfy general patterns. Such simplifiers are 
exceedingly useful since they can help us determine 
answers to global questions about  an expression (e.g. 
Is it a constant? Is it linear in x?). 

In [5], Caviness,describes a canonical simplification 
algorithm for a class of expressions related to REX 
expressions. His expressions admit only one real vari- 
able, say x, but no ~r, and no division at all. Because 
division is not allowed, Caviness' expressions are ex- 
ponential polynomials. By using a conjecture similar 
to Brown's, Caviness shows how exponential poly- 
nomials (other than pure polynomials) can be trans- 
formed into the form P~(x)eS~ + P2(x)eS~ + . . .  + 

P k ( x ) e  sk, where the & are distinct exponential poly- 
nomials which are also in this form, and the P~ are 
nonzero, canonically ordered polynomials. 

In [24] we describe a canonical and regular simplifier 
for first order exponential expressions (i.e. no nesting 
of exponentials) which are REX expressions but do not 
involve i or 7r. The proof  of the regularity of  our sim- 
plification algorithm also depends on a conjecture 
which is very similar to Brown's and Caviness' conjec- 
tures. 

The novel idea in our algorithm is to use a partial 
fraction decomposition of the exponents. The left-hand 
side of the equation below is in the usual canonical form 
for rational functions and the right-hand side represents 
a partial fraction expansion of  it. 

(x 5 -  x n + 1)/(x 4 -  x 2) 

= x + ( - I /x~)  + [ -½/ (x  + 1)1 + ½ / ( x -  1). 
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We require that the terms of the partial fraction de- 
composition be linearly independent (over the rational 
numbers) of each other. Such partial fraction decompo- 
sitions lead to yet another canonical representation of 
rational functions. The simplification algorithm breaks 
up an exponential of a sum into a product of exponen- 
tials which are replaced by labels in a manner similar 
to that of Brown's algorithm. 

Thus, eJ+x/e • is decomposed into e J e ~ / e  x. With 
proper relabeling and simplification of the resulting 
rational expression we obtained the simplified result 

2 e x . 

3.3.2 Expressions Involving Exponentials and Loga- 
rithms. The functions of the calculus include logarithms 
as well as rational functions and exponentials. Therefore, 
there is much interest in results admitting the logarithm 
function. A zero-equivalence algorithm was obtained by 
Richardson [28, 30] for a class of expressions which 
differs from the REX expressions in that it involves no i, 
only a single variable x, but allows the function log I x ]. 
The logarithm function in addition to the exponential 
function of REX expressions can be nested to any depth. 

His algorithm for determining the equivalence in- 
volves a reduct ion process in which one asks whether 
progressively less complex expressions are equivalent 
to 0. The algorithm is incomplete in that it relies, in 
some cases, on knowing whether a reduced expression 
composed entirely of constants is equal to 0. The re- 
quirement o f  the solution to this so-called "constant  
problem" is similar to the need for conjectures in the 
algorithms of 3.3.1. Richardson's algorithm is, further- 
more, only applicable when the expression being ex- 
amined is totally defined everywhere in the interval in 
which zero-equivalence is to be determined. In essence, 
this requirement implies that no subexpression is un- 
bounded in value at some finite point on the interval in 
question. 

Richardson's measure of the complexity of an ex- 
pression is very lexicographic in nature and relies on 
very little knowledge of the algebraic properties of the 
functions involved. For  example, e '~ is considered more 
complex than e • because of the greater depth of nesting 
of the exponential function, and (e~) ~ is more complex 
than e x because of its higher degree. The complexity 
measure does not presume that e 2x and (ex) 2 are alge- 
braically related. In fact, it does not matter very much 
which of these two expressions is considered more 
complex as long as the ranking is used consistently. 

The reduction procedure of' the algorithm assumes 
that the equivalence problem for rational functions is 
trivial. A more complex expression will force the 
algorithm to generate subproblems which will either 
end up as rational functions or constant problems. 

Let us suppose that we wish to determine whether 
an expression E is equivalent to 0. Let y be the most 
complex exponential or logarithmic term in E. Let us 
further suppose that y is a logarithmic term. By multi- 
plying out denominators, expanding products of sums, 
and collecting like terms, we can get a polynomial 

expression E* in y of the form 

E*: an(x )y"  -t- a,~-l(x)y '~-1 -t- " '"  -t- ao(x) ,  

which is equivalent to 0 if and only if the original ex- 
pression E is equivalent to 0. Since an(x)  does not con- 
tain y, it is less complex than E or E* and we can apply 
the algorithm recursively in order to determine if it is 
equivalent to 0. If a,~ is equivalent to 0 then since the 
expression El ,  

E l :  an_l (x )y  '~-1 -q- . . .  -1- ao(x) ,  

is of lower degree in y than E* and hence, less complex 
than E*, we can test to check if it is equivalent to 0. If 
it is, E* and therefore E are also equivalent to 0. If it is 
not, E* and E are not equivalent to 0. 

If a,~ is not equivalent to 0, divide E* by it resulting 
in the expression E2. 

E2: y"  q- [a,~_a(x)/an(x)] y , -1  -k- " ."  -k- a o ( x ) / a n ( x ) .  

Now differentiate, resulting in an expression, say E3, of 
the form 

E3: n y " - l y  ' + . . .  + (a,ao'  -- a o a , ' ) / a ,  2, 

E3 is of lower degree in y than E* since the derivative 
of a logarithmic term is of lower complexity than the 
term itself. (Note that this is essentially the only fact 
we need to know about  logarithms except for cases 
where the constant problem arises.) If E3 is not equiv- 
alent to 0, then E2 and therefore E* and E are not 
equivalent to 0. If E3 is equivalent to 0, then E* is 
equivalent to a constant multiple of a , .  To  complete 
the algorithm we must determine if the constant is 0. 
Thus the constant problem arises in Richardson's 
algorithm. One could attempt to evaluate the expression 
at a point as Oldehoeft does [26]. The situation here 
is simpler than in Oldehoeft 's cases since if the function 
is equivalent to a constant multiple of a, (which is not 
0) we need not worry about accidental values of 0 
arising in the evaluation. In many cases, it suffices to 
know the exact value of the logarithmic terms at only 
one or two points. 

If the most complex term y is an exponential, then 
Richardson's algorithm involves division by a0. Dif- 
ferentiation will then yield a low order term equal to 0. 
Since the derivative of yk is of degree k in y, the rest of 
the derivative can be divided by y to yield an expression 
similar to E3 which is of lower degree than E*. 

At the heart of Richardson's reduction procedure is 
the idea that through differentiation we can obtain ex- 
pressions which can be transformed in such a way as to 
yield simpler problems whose solution will determine 
the answer to the original equivalence problem. It turns 
out that this idea can be used to test expressions which 
involve functions other than i exponentials and 
logarithms. 

In [25] it is shown that Richardson's algorithm can 
be extended to accept functions defined by a differential 
equation of the form y '  = P ( x ,  y ) ,  where P is a poly- 
nomial in y. When P is linear in y the extension is 
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straightforward. P's which are quadratic in y are of 
great importance in applied mathematics. Unfortunately, 
when a function is defined by a quadratic P, then its 
derivative is more complex than itself. Thus if we are 
testing E(x,  y (x) )  for equivalence to 0, we shall usually 
find that E' (x ,  y (x ) )  has a higher degree in y than E 
does. If E ~ 0, then E '  ~ 0, and therefore, the greatest 
common divisor of E and E'  is also equivalent to 0. 
Conversely if the gcd of E and E'  is equivalent to 0, so 
is E. Hence, we may use the result of the equivalence 
test for the gcd. The gcd, however, may not be of lower 
degree in y than E itself is. In such cases it must possess 
the same degree in y as E does. Therefore, we may 
properly speak of E dividing E' .  Let us say that E ' / E  = 
Q(x,  y).  Therefore, integrating both sides 

log E = f Q(x, y) ax + cl 

E =  C~exp ( f Q(x ,  y)  d x )  

where 6"1, C2 are constants. 
Exponentials usually cannot  have a zero value. In 

such cases E can have a zero value only if C2 is identi- 
cally zero. This determination is another constant 
problem of a special nature in that we are dealing with 
a function that is either always 0 or never 0. An ex- 
ponential can have a zero value when the argument goes 
to -- ~ .  Such cases would be disallowed by Richardson's  
requirement that expressions be totally defined. 

3.3.3 Roots of Polynomials. In [4], Caviness discusses 
a class of  expressions which is obtained from the 
rational numbers, the variable x, the rational operations, 
and the operation of exponentiating to a rational 
number. The exponentiation in this class may not be 
nested. The following expressions are in this class: 

1/ (x  ½ + x~), (4 -- x)a / (x  ~ + 2) ]. 

The expression (x + 3~)~ is not in this class because it 
involves nested exponentiation by nonintegers. Caviness 
shows that there exists a zero-equivalence simplification 
algorithm fol this class of expressions. The algorithm 
is not canonical. Furthermore,  it is also very time- 
consuming since it can easily force one to factor poly- 
nomials (over the integers) having a high degree, and 
factorization is still a very expensive operation. 

Recently, Fateman [12] showed that factorization is 
usually not necessary if we modify the meaning of a 
radical expression. What Caviness means by a radical 
expression such as x/x is a symbol which represents the 
general root of a polynomial equation (i.e. y~ - x = 0). 
That  is, x /x  can be either one of the roots normally 
written as + x / x  and - -x /x .  Fateman's  algorithm as- 
sumes that the symbol x/x represents exactly one of the 
roots, and that - x / x  represents the other. 

Fateman's  algorithm, except for expressions in- 
volving roots of -- 1, has the same property as Caviness', 
namely the zero-equivalence property. Yet all he needs 
to test is whether the integers and polynomials which 
occur inside the radicals are relatively prime to each 
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other. He would decompose (x 2 - 1) ~ into (x - 1)t 
(x + 1)~ if (x - I)~ or (x + 1)~ occurred elsewhere 
in the expression. But (x 2 + 2)~ would be left unchanged 
since no other simplified radical expression could 
combine with it under the rational operations. In both 
Caviness' and Fateman's  algorithms the proof that the 
simplification algorithm has the zero-equivalence prop- 
erty is obtained without resorting to additional con- 
jectures. 

Fateman's  algorithm can be made canonical (again 
except for roots of - 1 )  by removing radicals from 
denominators in quotients through a generalization of 
the process of "rationalizing the denominator ."  Thus 
1/ (x  + x/2) could be converted to (x - v /2 ) / (x  2 - 2) 
in order to achieve a canonical form. 

3.3.4 Unsolvability Results. The best-known negative 
result in algebraic manipulation is a theorem by 
Richardson [5, 28] that shows that there exists a class 
of expressions E for which the zero-equivalence problem 
is recursively unsolvable. 

The starting point for most unsolvability results in 
algebraic manipulation is Hilbert 's Tenth Problem. This 
problem, also known as the Diophantine Problem, asks 
whether there exists an algorithm for telling whether 
polynomials in several variables with integer coefficients 
have solutions which are integers. This problem has 
been recently shown to be recursively unsolvable [21]. 

For  any polynomial P(x l  , x~ , • • • , xn), with integer 
coefficients, we can reduce the question of  whether P = 
0 has integer solutions to whether the equation 

• sin 2 7rxi + P2(xl , x2 , " "  , x , )  = 0 
i=1 

has real solutions since each term sin27rxi forces x~ to 
be an integer. By manipulating the equation above~ 
Richardson was able to show the existence of a set of 
functions G~(x) derivable from any polynomial 
P~(x~  x2,  . . ' ,  x , )  such that it was recursively un- 
solvable to decide whether G~(x) < 0 for some value 
o f x .  

At this point we have an undecidability result for the 
class of expressions formed by the rational numbers 
and ~-, the variable x, the operations of addition and 
multiplication, and the sine function (which can be 
nested). By adding the absolute value function to this 
class, Richardson was able to modify the Gi(x)  to F~(x) 
such that the question "F¢(x) =-- 0?" could not be solved 
recursively. 

Richardson's unsolvability result is considered by 
some people to be an important  limit to theoretical 
results in algebraic manipulation. On the other hand, 
the generality of the extensions possible to Richardson's 
zero-equivalence algorithm (see Section 3.3.2) give a 
much more optimistic outlook. In fact, the unsolvability 
problem may lie in Richardson's use of the absolute 
value function. When one adds the absolute value func- 
tion to a class of functions which forms a field (e.g. the 
rational functions), then one introduces zero-divisors. 
For  example, (x q-- Ix  I)(x - [ x I) = 0, although 
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nei ther  fac tor  is 0. The  lesson which R i c h a r d s o n ' s  re- 
suits t aken  together may  ho ld  for  a lgebra ic  m a n i p u l a t i o n  
is tha t  one should  exercise great  care  in i n t roduc ing  
funct ions  o ther  than  the " n a t u r a l "  ones which are  solu- 
t ions  to  different ial  equa t ions ,  but  tha t  with these na tura l  
funct ions:  very powerfu l  s impl i f ica t ion  p rocedures  are 
possible.  

4. Prospects for the Future 

A l t h o u g h  the field o f  a lgebra ic  man ipu l a t i on  can 
a l r eady  c la im a number  o f  i m p o r t a n t  advances  in the 
design o f  a lgor i thms,  and  a significant number  o f  im- 
po r t an t  appl ica t ions ,  one canno t  yet say tha t  the field 
has  stabil ized.  We have a l r eady  witnessed the demise  of  
pure ly  conservat ive  systems. In the next few years  we 
may  witness the demise  o f  pure ly  l iberal  systems.  The  
reason for the d imin i shed  impor t ance  o f  such systems 
is their  inefficiency when c o m p a r e d  to the a lgor i thms  
provided  in radical  systems or  subsystems.  I t  would  not  
be surpr is ing if many  radica l  systems mature  into new 
left systems when the res t r ic t ions  of  canonica l  fo rms  
become unbearable .  This  would  leave the new left 
systems with a single represen ta t ion ,  which is a com-  
promise  between the radica l  and  l ibera l  representa t ions ,  
and  the cathol ic  systems with their  mul t ip le  representa-  
t ions.  We believe tha t  the theore t ic ians  and  the ma jo r  
users will tend to gravi ta te  to the new left systems, and  
the systems designers  to the ca thol ic  ones.  

We expect  to see theore t ica l  results  a b o u t  s implif ica-  
t ion a lgor i thms  encompass  increas ingly  larger  classes o f  
expressions.  The  genera l i ty  o f  the extensions  which can 
be made  to R i c h a r d s o n ' s  ze ro-equiva lence  a lgo r i t hm 
lead one to expect  tha t  in the next few years  it  m a y  be 
possible  for a user to define a funct ion as a so lu t ion  to 
a different ial  equa t ion  and  then e m p l o y  tha t  funct ion 
and  its s impl i f icat ion proper t ies  i m m e d i a t e l y  in a 
ca lcula t ion .  

One th ing tha t  we do  not  expect  is tha t  the  difficulties 
o f  using a lgebra ic  m a n i p u l a t i o n  systems will d i s appea r  
comple te ly .  Users  will  cont inue  to compla in ,  and  de- 
signers will, we hope,  cont inue  to  improve  their  crea-  
t ions.  
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