Frequencies and Color

Alexei Efros, CS280, Spring 2018

Salvador Dali
"Gala Contemplating the Mediterranean Sea, which at 30 meters becomes the portrait of Abraham Lincoln", 1976

Spatial Frequencies and Perception

Campbell-Robson contrast sensitivity curve

Depends on age

application: Hybrid Images

What you see...

From Far Away Up Close

Application: Hybrid Images

Gaussian Filter

A. Oliva, A. Torralba, P.G. Schyns,

Low-pass, Band-pass, High-pass filters

low-pass:

High-pass / band-pass:

CS194-26: Comp Photo homework (by Riyaz Faizullabhoy)

Prof. Jitendros Papadimalik

Fourier transform: a nice set of basis

Teases away fast vs. slow changes in the image.

Band-pass filtering

Gaussian Pyramid (low-pass images)

Laplacian Pyramid (Burt and Adelson, 83)

How can we reconstruct (collapse) this pyramid into the original image?

Cut and Paste Blending

Pyramid Blending

(d)

(h)

(1)
http://persci.mit.edu/pub pdfs/spline83.pdf

Blending Regions

Results from previous class

© Chris Cameron

Da Vinci, the vision scientist

Da Vinci and Peripheral Vision

Saccadic eye movement

Micro-saccadic movements

Large-saccadic movements

Saccadic eye movement

The Eye

The human eye is a camera!

- Iris - colored annulus with radial muscles
- Pupil - the hole (aperture) whose size is controlled by the iris
- What's the "film"?
- photoreceptor cells (rods and cones) in the retina

The Retina

Retina up-close

Two types of light-sensitive receptors

Cones

cone-shaped less sensitive operate in high light color vision

Rods

rod-shaped
highly sensitive operate at night gray-scale vision

Distribution of Rods and Cones

Night Sky: why are there more stars off-center?

Leonardo playing with peripheral vision

Freq. Perception Depends on Color

Blur R
Blur G
Blur B

Electromagnetic Spectrum

Human Luminance Sensitivity Function

Visible Light

Why do we see light of these wavelengths?

The Physics of Light

Any patch of light can be completely described physically by its spectrum: the number of photons (per time unit) at each wavelength $400-700 \mathrm{~nm}$.

The Physics of Light

Some examples of the spectra of light sources

A. Ruby Laser

C. Tungsten Lightbulb

B. Gallium Phosphide Crystal

D. Normal Daylight

The Physics of Light

Some examples of the reflectance spectra of surfaces

\% Photons Reflected

 400
 700400 Wavelength (nm)

700

Physiology of Color Vision

Three kinds of cones:

WAVELENGTH (nm.)

- Why are M and L cones so close?
-Why are there 3 ?

Trichromacy

Wavelength

Rods and cones act as filters on the spectrum

- To get the output of a filter, multiply its response curve by the spectrum, integrate over all wavelengths
- Each cone yields one number
- How can we represent an entire spectrum with 3 numbers?
- We can't! Most of the information is lost
- As a result, two different spectra may appear indistinguishable
» such spectra are known as metamers

More Spectra

Color spaces: RGB

Default color space

RGB cube

- Easy for devices

- But not perceptual
- Where do the grays live?
- Where is hue and saturation?

Color Sensing in Camera (RGB)

3-chip vs. 1-chip: quality vs. cost Why more green?

Why 3 colors?

Bayer filter

The Psychophysical Correspondence

There is no simple functional description for the perceived color of all lights under all viewing conditions, but

A helpful constraint:
Consider only physical spectra with normal distributions

The Psychophysical Correspondence

Mean \longleftrightarrow Hue

Wavelength

The Psychophysical Correspondence

Variance \longleftrightarrow Saturation

The Psychophysical Correspondence

Area \Longleftrightarrow Brightness

HSV

Hue, Saturation, Value (Intensity)

- RGB cube on its vertex

Decouples the three components (a bit)
Use rgb2hsv() and hsv2rgb() in Matlab

Color spaces: HSV

Intuitive color space

Color spaces: L*a*b*

"Perceptually uniform"* color space

Color Constancy

The "photometer metaphor" of color perception:
Color perception is determined by the spectrum of light on each retinal receptor (as measured by a photometer).

Color Constancy

The "photometer metaphor" of color perception:
Color perception is determined by the spectrum of light on each retinal receptor (as measured by a photometer).

Color Constancy

The "photometar metaphor" of colo" verception:
Color perception is derorined by the spectrum of light on each rotimal receptor (as measurid hy a photometer).

Color Constancy

Do we have constancy over

 all global coior transofermations?

60\% blue filter

Complete inversion

Color Constancy

Color Constancy: the ability to perceive the invariant color of a surface despite ecological Variations in the conditions of observation.

Another of these hard inverse problems:
Physics of light emission and surface reflection underdetermine perception of surface color

Camera White Balancing

- Manual
- Choose color-neutral object in the photos and normalize
- Automatic (AWB)
- Grey World: force average color of scene to grey
- White World: force brightest object to white

Different kinds of images

Radiance images, where a pixel value corresponds to the radiance from some point in the scene in the direction of the camera.
Other modalities

- X-rays, MRI...
- Light Microscopy, Electron Microscopy...

