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Image Formation 

Digital Camera 

The Eye 

Film 



What is an image? 
We can think of an image as a function, f, from R2 to R: 

• f( x, y ) gives the intensity at position ( x, y )  
• Realistically, we expect the image only to be defined over a rectangle, 

with a finite range: 
– f: [a,b]x[c,d]  [0,1] 

 
A color image is just three functions pasted together.  

We can write this as a “vector-valued” function:  
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Images as functions 
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What’s in the “pixel intensity”? 

f(x,y) = reflectance(x,y) * illumination(x,y) 
Reflectance in [0,1], illumination in [0,inf] 



Problem: Dynamic Range 
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Long Exposure 

10-6 106 

10-6 106 

Real world 

Picture 

0 to 255 

High dynamic range 

• What does pixel value 255 mean? 



Short Exposure 

10-6 106 

10-6 106 

Real world 

Picture 

0 to 255 

High dynamic range 

• What does pixel value 0 mean? 



pixel (312, 284) = 42 

Image 

42 photos? 

Is Camera a photometer? 



scene 
radiance 

 

(W/sr/m  ) 

∫ sensor 
irradiance 

sensor 
exposure 

Lens Shutter 

2 

∆t 

analog 
voltages 

digital 
values 

pixel 
values 

CCD ADC Remapping 

Image Acquisition Pipeline 

Camera is NOT a photometer! 



Simple Point Processing: Enhancement 



Point Processing 
The simplest kind of range transformations are 

these independent of position x,y: 
g = T(f) 

This is called point processing. 
 
e.g. Gain and Bias transform: 
     g(x,y) = a*f(x,y) + b 
 
Important: every pixel for himself – spatial 

information completely lost! 



Power-law transformations 



Basic Point Processing 



Negative 



Log 



Contrast Stretching 



Image Histograms 

Cumulative Histograms 

s = T(r) 



Histogram Equalization 



Color Transfer [Reinhard, et al, 2001] 

Erik Reinhard, Michael Ashikhmin, Bruce Gooch, Peter Shirley, Color Transfer between 
Images. IEEE Computer Graphics and Applications, 21(5), pp. 34–41. September 2001.  

http://www.cs.bris.ac.uk/Publications/pub_master.jsp?id=2000476
http://www.cs.bris.ac.uk/Publications/pub_master.jsp?id=2000476
http://www.cs.bris.ac.uk/Publications/pub_master.jsp?id=2000476
http://www.cs.bris.ac.uk/Publications/pub_master.jsp?id=2000476
http://www.cs.bris.ac.uk/Publications/pub_master.jsp?id=2000476
http://www.cs.bris.ac.uk/Publications/pub_master.jsp?id=2000476


Limitations of Point Processing 
Q: What happens if I reshuffle all pixels within 

the image? 
 
 
 
A: It’s histogram won’t change.  No point 

processing will be affected… 
 
 



Sampling and Reconstruction 



Sampling and Quantization 
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Sampled representations 

• How to store and compute with continuous functions? 

• Common scheme for representation: samples 
– write down the function’s values at many points 
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Reconstruction 

• Making samples back into a continuous function 
– for output (need realizable method) 
– for analysis or processing (need mathematical method) 
– amounts to “guessing” what the function did in between 
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1D Example: Audio 

low high 
frequencies 
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Sampling in digital audio 

• Recording: sound to analog to samples to disc 

• Playback: disc to samples to analog to sound again 
– how can we be sure we are filling in the gaps correctly? 
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Sampling and Reconstruction 

• Simple example: a sign wave 
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Undersampling 

• What if we “missed” things between the samples? 

• Simple example: undersampling a sine wave 
– unsurprising result: information is lost 
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Undersampling 

• What if we “missed” things between the samples? 

• Simple example: undersampling a sine wave 
– unsurprising result: information is lost 
– surprising result: indistinguishable from lower frequency 
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Undersampling 

• What if we “missed” things between the samples? 

• Simple example: undersampling a sine wave 
– unsurprising result: information is lost 
– surprising result: indistinguishable from lower frequency 
– also, was always indistinguishable from higher frequencies 
– aliasing: signals “traveling in disguise” as other frequencies 



Aliasing in video 

Slide by Steve Seitz 



Aliasing in images 



Antialiasing 
What can we do about aliasing? 
 
Sample more often 

• Join the Mega-Pixel craze of the photo industry 
• But this can’t go on forever 

 
Make the signal less “wiggly”  

• Get rid of some high frequencies 
• Will loose information 
• But it’s better than aliasing 
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Preventing aliasing 

• Introduce lowpass filters: 
– remove high frequencies leaving only safe, low frequencies 
– choose lowest frequency in reconstruction (disambiguate) 
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Linear filtering: a key idea 

• Transformations on signals; e.g.: 
– bass/treble controls on stereo 
– blurring/sharpening operations in image editing 
– smoothing/noise reduction in tracking 

• Key properties 
– linearity: filter(f + g) = filter(f) + filter(g) 
– shift invariance: behavior invariant to shifting the input 

• delaying an audio signal 
• sliding an image around 

• Can be modeled mathematically by convolution 
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Moving Average 

• basic idea: define a new function by averaging over a 
sliding window 

• a simple example to start off: smoothing 
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Moving Average 

• Can add weights to our moving average 

• Weights  […, 0, 1, 1, 1, 1, 1, 0, …]  / 5  
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What does it do? 
• Replaces each pixel with 

an average of its 
neighborhood 
 

• Achieve smoothing effect 
(remove sharp features) 

1 1 1 

1 1 1 

1 1 1 

Slide credit: David Lowe (UBC) 
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Box Filter 



Linear filters: examples 

Original 

1 1 1 
1 1 1 
1 1 1 

Blur (with a mean 
filter) 

Source: D. Lowe 

= 



Cross-correlation 

This is called a cross-correlation operation: 

 

Let      be the image,      be the kernel (of 
size 2k+1 x 2k+1), and      be the output 
image 

 

 

• Can think of as a “dot product” between 
local neighborhood and kernel for each pixel 



Practice with linear filters 
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Original 
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Source: D. Lowe 



Practice with linear filters 
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Original Filtered  
(no change) 

Source: D. Lowe 



Practice with linear filters 

Original 

? 

Source: D. Lowe 
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Practice with linear filters 

0 0 0 
1 0 0 
0 0 0 

Original Shifted left 
By 1 pixel 

Source: D. Lowe 



Other filters 
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Vertical Edge 
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Sobel 



Other filters 
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Q? 
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Back to the box filter 
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Moving Average 

• Can add weights to our moving average 

• Weights  […, 0, 1, 1, 1, 1, 1, 0, …]  / 5  
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Weighted Moving Average 

• bell curve (gaussian-like) weights […, 1, 4, 6, 4, 1, …] 
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Moving Average In 2D 

What are the weights H? 
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Slide by Steve Seitz 
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Gaussian filtering 
A Gaussian kernel gives less weight to pixels further from the center 
of the window 

 

 

 

 

 

 

 

This kernel is an approximation of a Gaussian function: 
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Slide by Steve Seitz 
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Mean vs. Gaussian filtering 

Slide by Steve Seitz 
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Weight contributions of neighboring pixels by nearness 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.003   0.013   0.022   0.013   0.003 
0.013   0.059   0.097   0.059   0.013 
0.022   0.097   0.159   0.097   0.022 
0.013   0.059   0.097   0.059   0.013 
0.003   0.013   0.022   0.013   0.003 

5 x 5, σ = 1 

Slide credit: Christopher Rasmussen  

Important filter: Gaussian 
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Gaussian Kernel 

• Standard deviation σ: determines extent of smoothing 

Source: K. Grauman 

σ = 2 with 30 x 30 
kernel 

σ = 5 with 30 x 30 
kernel 



Gaussian filters 

= 30 pixels = 1 pixel = 5 pixels = 10 pixels 
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Choosing kernel width 
• The Gaussian function has infinite support, but discrete filters 

use finite kernels 

Source: K. Grauman 
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How big should the filter be? 

Values at edges should be near zero 

Rule of thumb for Gaussian: set filter half-width to about 3 σ 

 

Practical matters 

Side by Derek Hoiem 



Cross-correlation vs. Convolution 
cross-correlation: 
 
 
 
A convolution operation is a cross-correlation where the filter is 

flipped both horizontally and vertically before being applied to 
the image: 

 
 
 
It is written:   
 
 
Convolution is commutative and associative 
 

Slide by Steve Seitz 



Convolution 

Adapted from F. Durand 
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Convolution is nice! 

• Notation: 

• Convolution is a multiplication-like operation 
– commutative 
– associative 
– distributes over addition 
– scalars factor out 
– identity: unit impulse e = […, 0, 0, 1, 0, 0, …] 

 

• Conceptually no distinction between filter and signal 

• Usefulness of associativity 
– often apply several filters one after another: (((a * b1) * b2) * b3) 
– this is equivalent to applying one filter: a * (b1 * b2 * b3) 



Gaussian and convolution 
• Removes “high-frequency” components from 

the image (low-pass filter) 
• Convolution with self is another Gaussian 

 
 
 
 

– Convolving twice with Gaussian kernel of width     
= convolving once with kernel of width   

Source: K. Grauman 

* = 
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The Convolution Theorem 
The greatest thing since sliced (banana) bread! 
 

• The Fourier transform of the convolution of two 
functions is the product of their Fourier transforms 
 
 

• The inverse Fourier transform of the product of two 
Fourier transforms is the convolution of the two 
inverse Fourier transforms 
 
 

• Convolution in spatial domain is equivalent to 
multiplication in frequency domain! 

]F[]F[]F[ hghg =∗

][F][F][F 111 hggh −−− ∗=



2D convolution theorem example 

* 

f(x,y) 

h(x,y) 

g(x,y) 

|F(sx,sy)| 

|H(sx,sy)| 

|G(sx,sy)| 



Why does the Gaussian give a nice smooth 
image, but the square filter give edgy artifacts? 

Gaussian Box filter 

Filtering 
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Fourier Transform pairs 



Practical matters 
What is the size of the output? 
MATLAB: filter2(g, f, shape) or conv2(g,f,shape) 

• shape = ‘full’: output size is sum of sizes of f and g 
• shape = ‘same’: output size is same as f 
• shape = ‘valid’: output size is difference of sizes of f and g  

f 

g g 

g g 

f 

g g 

g g 

f 

g g 

g g 

full same valid 

Source: S. Lazebnik 



Image half-sizing 

This image is too big to 
fit on the screen.  How 
can we reduce it? 
 
How to generate a half- 
sized version? 



Image sub-sampling 

Throw away every other row and 
column to create a 1/2 size image 

- called image sub-sampling 

1/4 

1/8 

Slide by Steve Seitz 



Image sub-sampling 

1/4  (2x zoom) 1/8  (4x zoom) 

Aliasing!  What do we do? 

1/2 

Slide by Steve Seitz 



Sampling an image 

Examples of GOOD sampling 



Undersampling 

Examples of BAD sampling -> Aliasing 



Gaussian (lowpass) pre-filtering 

G 1/4 

G 1/8 

Gaussian 1/2 

Solution:  filter the image, then subsample 
• Filter size should double for each ½ size reduction.  Why? 

Slide by Steve Seitz 



Subsampling with Gaussian pre-filtering 

G 1/4  G 1/8 Gaussian 1/2 

Slide by Steve Seitz 



Compare with... 

1/4  (2x zoom) 1/8  (4x zoom) 1/2 

Slide by Steve Seitz 



Gaussian (lowpass) pre-filtering 

G 1/4 

G 1/8 

Gaussian 1/2 

Solution:  filter the image, then subsample 
• Filter size should double for each ½ size reduction.  Why? 
• How can we speed this up? Slide by Steve Seitz 



Image Pyramids 

Known as a Gaussian Pyramid [Burt and Adelson, 1983] 
• In computer graphics, a mip map [Williams, 1983] 
• A precursor to wavelet transform 

Slide by Steve Seitz 



A bar in the 
big images is a 
hair on the 
zebra’s nose; 
in smaller 
images, a 
stripe; in the 
smallest, the 
animal’s nose 

Figure from David Forsyth 



Gaussian pyramid construction 

filter mask 

Repeat 
• Filter 
• Subsample 

Until minimum resolution reached  
• can specify desired number of levels (e.g., 3-level pyramid) 
 

The whole pyramid is only 4/3 the size of the original image! 
Slide by Steve Seitz 



What are they good for? 
Improve Search 

• Search over translations 
– Classic coarse-to-fine strategy 

• Search over scale 
– Template matching 
– E.g. find a face at different scales 

 



Sharpening 
What does blurring take away? 

original smoothed (5x5) 

– 

detail 

= 

sharpened 

= 

Let’s add it back: 

original detail 

+ α 



Unsharp mask filter 

Gaussian 
unit impulse 

Laplacian of Gaussian 

))1(()1()( gefgffgfff ααααα −+∗=∗−+=∗−+

image blurred 
image 

unit impulse 
(identity) 
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