## Image Processing



Alexei Efros, CS280, Spring 2018

## Image Formation




Digital Camera


The Eye

## What is an image?

We can think of an image as a function, $f$, from $\mathrm{R}^{2}$ to R :

- $f(x, y)$ gives the intensity at position ( $x, y$ )
- Realistically, we expect the image only to be defined over a rectangle, with a finite range:

$$
-f:[a, b] \times[c, d] \rightarrow[0,1]
$$

A color image is just three functions pasted together. We can write this as a "vector-valued" function:

$$
f(x, y)=\left[\begin{array}{l}
r(x, y) \\
g(x, y) \\
b(x, y)
\end{array}\right]
$$

## Images as functions



## What's in the "pixel intensity"?



FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.
$f(x, y)=$ reflectance $(x, y)$ *illumination $(x, y)$ Reflectance in [0,1], illumination in [0,inf]

## Problem: Dynamic Range



## Long Exposure



- What does pixel value 255 mean?


## Short Exposure



- What does pixel value 0 mean?


## Is Camera a photometer?

## Image



## Image Acquisition Pipeline



Camera is NOT a photometer!

## Simple Point Processing: Enhancement

a b
c d
FIGURE 3.9
(a) Aerial image. (b)-(d) Results of applying the transformation in Eq. (3.2-3) with $c=1$ and $\gamma=3.0,4.0$, and 5.0 , respectively (Original image for this example courtesy of NASA.)


## Point Processing

The simplest kind of range transformations are these independent of position $\mathrm{x}, \mathrm{y}$ :

$$
g=T(f)
$$

This is called point processing.
e.g. Gain and Bias transform:

$$
g(x, y)=a \star f(x, y)+b
$$

Important: every pixel for himself - spatial information completely lost!

## Power-law transformations



FIGURE 3.6 Plots of the equation $s=c r^{\gamma}$ for various values of $\gamma(c=1$ in all cases).

## Basic Point Processing

FIGURE 3.3 Some
basic gray-level transformation functions used for image enhancement.


## Negative


a b
FIGURE 3.4
(a) Original digital mammogram. (b) Negative image obtained using the negative transformation in Eq. (3.2-1). (Courtesy of G.E. Medical Systems.)

## Log

a b
FIGURE 3.5
(a) Fourier
spectrum.
(b) Result of applying the log transformation
given in
Eq. (3.2-2) with $c=1$.


## Contrast Stretching



a b
c d
FIGURE 3.10
Contrast
stretching.
(a) Form of transformation function. (b) A low-contrast image. (c) Result of contrast stretching. (d) Result of thresholding. (Original image courtesy of Dr. Roger Heady, Research School of Biological
Sciences,
Australian
National
University,
Canberra,
Australia.)

## Image Histograms




$$
s=T(r)
$$

a b
FIGURE 3.15 Four basic image types: dark, light, low con trast, high contrast, and their corresponding histograms. (Original image courtesy of Dr. Roger Heady, Research School of Biological Sciences, Australian National University, Canberra, Australia.)

## Histogram Equalization



FIGURE 3.17 (a) Images from Fig. 3.15. (b) Results of histogram equalization. (c) Corresponding histograms

## Color Transfer [Reinhard, et al, 2001]



Erik Reinhard, Michael Ashikhmin, Bruce Gooch, Peter Shirley, Color Transfer between Images. IEEE Computer Graphics and Applications, 21(5), pp. 34-41. September 2001.

## Limitations of Point Processing

Q: What happens if I reshuffle all pixels within the image?


A: It's histogram won't change. No point processing will be affected...

## Sampling and Reconstruction



## Sampling and Quantization



FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from $A$ to $B$ in the continuous image, used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

## Sampled representations

- How to store and compute with continuous functions?
- Common scheme for representation: samples
- write down the function's values at many points



## Reconstruction

- Making samples back into a continuous function
- for output (need realizable method)
- for analysis or processing (need mathematical method)
- amounts to "guessing" what the function did in between


Reconstruction


## 1D Example: Audio


frequencies

## Sampling in digital audio

- Recording: sound to analog to samples to disc
- Playback: disc to samples to analog to sound again
- how can we be sure we are filling in the gaps correctly?



## Sampling and Reconstruction

- Simple example: a sign wave

© 2006 Steve Marschner • 28


## Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
- unsurprising result: information is lost



## Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
- unsurprising result: information is lost
- surprising result: indistinguishable from lower frequency



## Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
- unsurprising result: information is lost
- surprising result: indistinguishable from lower frequency
- also, was always indistinguishable from higher frequencies
- aliasing: signals "traveling in disguise" as other frequencies



## Aliasing in video

Imagine a spoked wheel moving to the right (rotating clockwise).
Mark wheel with dot so we can see what's happening.
If camera shutter is only open for a fraction of a frame time (frame time $=1 / 30 \mathrm{sec}$. for video, $1 / 24 \mathrm{sec}$. for film):

time

Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

## Aliasing in images



Disintegrating textures

## Antialiasing

What can we do about aliasing?

Sample more often

- Join the Mega-Pixel craze of the photo industry
- But this can't go on forever

Make the signal less "wiggly"

- Get rid of some high frequencies
- Will loose information
- But it's better than aliasing


## Preventing aliasing

- Introduce lowpass filters:
- remove high frequencies leaving only safe, low frequencies
- choose lowest frequency in reconstruction (disambiguate)



## Linear filtering: a key idea

- Transformations on signals; e.g.:
- bass/treble controls on stereo
- blurring/sharpening operations in image editing
- smoothing/noise reduction in tracking
- Key properties
- linearity: filter $(f+g)=$ filter $(f)+$ filter $(g)$
- shift invariance: behavior invariant to shifting the input
- delaying an audio signal
- sliding an image around
- Can be modeled mathematically by convolution


## Moving Average

- basic idea: define a new function by averaging over a sliding window
- a simple example to start off: smoothing



## Moving Average

- Can add weights to our moving average
- Weights [..., $0,1,1,1,1,1,0, \ldots] / 5$



## In 2D: box filter

$h[\cdot, \cdot]$


Slide credit: David Lowe (UBC)

## Image filtering

## $f[. .$, <br> $g[.,$.

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 90 | 0 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |


|  | $\square$ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
g[m, n]=\sum_{k, l} h[k, l] f[m+k, n+l]
$$

Image filtering
$f[.,] \quad g.[. .$,

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 90 | 0 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |


|  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0 | 10 |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

$$
g[m, n]=\sum_{k, l} h[k, l] f[m+k, n+l]
$$

Image filtering
$f[. .$,
$g[.,$.

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 23 | ${ }^{20}$ |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

Image filtering
f[.,.]
$g[.,$.

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - | ${ }^{10}$ | ${ }^{20} 20$ |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

Image filtering
$f[.,$.
$g[.,$.

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | ${ }^{10}$ | ${ }^{0}$ | ${ }^{30}[20]$ |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

Image filtering
f[.,.]
$g[.,$.

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | ${ }^{10}$ | ${ }^{20} 3$ | ${ }^{30}$ |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  | $?$ |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

Image filtering
f[..,]
$g[.,$.

|  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0 | 10 | 20 | 30 | 30 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | 50 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

Image filtering
$h[\cdot, \cdot]$ 閊
$f[.,] \quad g.[. .$,

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 90 | 0 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |


|  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 10 | 20 | 30 | 30 | 30 | 20 | 10 |  |
|  | 0 | 20 | 40 | 60 | 60 | 60 | 40 | 20 |  |
|  | 0 | 30 | 60 | 90 | 90 | 90 | 60 | 30 |  |
|  | 0 | 30 | 50 | 80 | 80 | 90 | 60 | 30 |  |
|  | 0 | 30 | 50 | 80 | 80 | 90 | 60 | 30 |  |
|  | 0 | 20 | 30 | 50 | 50 | 60 | 40 | 20 |  |
|  | 10 | 20 | 30 | 30 | 30 | 30 | 20 | 10 |  |
|  | 10 | 10 | 10 | 0 | 0 | 0 | 0 | 0 |  |
|  |  |  |  |  |  |  |  |  |  |

$$
g[m, n]=\sum_{k, l} h[k, l] f[m+k, n+l]
$$

## Box Filter

## What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect
 (remove sharp features)


## Linear filters: examples



Original


Blur (with a mean filter)

## Cross-correlation

Let $F$ be the image, $H$ be the kernel (of size $2 k+1 \times 2 k+1$ ), and $G$ be the output image

$$
G[i, j]=\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i+u, j+v]
$$

This is called a cross-correlation operation:

$$
G=H \otimes F
$$

- Can think of as a "dot product" between local neighborhood and kernel for each pixel


## Practice with linear filters


?

Original

## Practice with linear filters



Original


Filtered
(no change)

## Practice with linear filters


?

Original

## Practice with linear filters



Original

| 0 | 0 | 0 |
| :--- | :--- | :--- |
| 0 | 0 | 1 |
| 0 | 0 | 0 |

Shifted left
By 1 pixel

## Other filters



## Other filters

| 1 | 2 | 1 |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| -1 | -2 | -1 |

Sobel


Horizontal Edge (absolute value)

## Back to the box filter



## Moving Average

- Can add weights to our moving average
- Weights [..., $0,1,1,1,1,1,0, \ldots] / 5$



## Weighted Moving Average

- bell curve (gaussian-like) weights [..., 1, 4, 6, 4, 1, ...]



## Moving Average In 2D

What are the weights H ?

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 90 | 0 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |


$H[u, v]$

$$
F[x, y]
$$

## Gaussian filtering

A Gaussian kernel gives less weight to pixels further from the center of the window

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 90 | 0 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |


| 1 | 1 | 2 | 1 |
| :---: | :---: | :---: | :---: |
| 16 | 2 | 4 | 2 |
|  | 1 | 2 | 1 |

$H[u, v]$

$$
h(u, v)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{u^{2}+v^{2}}{\sigma^{2}}}
$$

This kernel is an approximation of a Gaussian runction:

## Mean vs. Gaussian filtering



## Important filter: Gaussian

Weight contributions of neighboring pixels by nearness


$$
G_{\sigma}=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}}
$$

## Gaussian Kernel

$$
G_{\sigma}=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}}
$$

$$
\sigma=2 \text { with } 30 \times 30
$$

kernel


- Standard deviation $\sigma$ : determines extent of smoothing


## Gaussian filters


$\sigma=1$ pixel
$\sigma=5$ pixels
$\sigma=10$ pixels


## Choosing kernel width

- The Gaussian function has infinite support, but discrete filters use finite kernels



## Practical matters

## How big should the filter be?

Values at edges should be near zero
Rule of thumb for Gaussian: set filter half-width to about $3 \sigma$

Effect of $\sigma$


## Cross-correlation vs. Convolution

cross-correlation: $\quad G=H \otimes F$

$$
G[i, j]=\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i+u, j+v]
$$

A convolution operation is a cross-correlation where the filter is flipped both horizontally and vertically before being applied to the image:

$$
G[i, j]=\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i-u, j-v]
$$

It is written:

$$
G=H \star F
$$

Convolution is commutative and associative

## Convolution



## Convolution is nice!

- Notation: $b=c \star a$
- Convolution is a multiplication-like operation
- commutative $a \star b=b \star a$
- associativ $\epsilon \star(b \star c)=(a \star b) \star c$
- distributes over additior $a \star(b+c)=a \star b+a \star c$
- scalars factor out $\alpha a \star b=a \star \alpha b=\alpha(a \star b)$
- identity: unit impulse $e=[\ldots, 0,0,1,0,0, \ldots]$

$$
a \star e=a
$$

- Conceptually no distinction between filter and signal
- Usefulness of associativity
- often apply several filters one after another: $\left(\left(\left(a * b_{1}\right) * b_{2}\right) * b_{3}\right)$
- this is equivalent to applying one filter: a * $\left(b_{1} * b_{2}{ }^{*} b_{3}\right)$


## Gaussian and convolution

- Removes "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian

- Convolving twice with Gaussian kernel of width $\sigma$ = convolving once with kernel of width $\sigma \sqrt{2}$


## The Convolution Theorem

The greatest thing since sliced (banana) bread!

- The Fourier transform of the convolution of two functions is the product of their Fourier transforms

$$
\mathrm{F}[g * h]=\mathrm{F}[g] \mathrm{F}[h]
$$

- The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms

$$
\mathrm{F}^{-1}[g h]=\mathrm{F}^{-1}[g] * \mathrm{~F}^{-1}[h]
$$

- Convolution in spatial domain is equivalent to multiplication in frequency domain!


## 2D convolution theorem example



## Filtering

## Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

## Gaussian <br> $\square$

## Fourier Transform pairs

Spatial domain




Frequency domain



## Practical matters

What is the size of the output?
MATLAB: filter2(g, f, shape) or conv2(g,f,shape)

- shape = 'full': output size is sum of sizes of $f$ and $g$
- shape = 'same': output size is same as f
- shape = 'valid': output size is difference of sizes of $f$ and $g$



## Image half-sizing

This image is too big to fit on the screen. How can we reduce it?

How to generate a halfsized version?


## Image sub-sampling



1/8
1/4

Throw away every other row and column to create a $1 / 2$ size image

- called image sub-sampling


## Image sub-sampling



Aliasing! What do we do?

## Sampling an image



Examples of GOOD sampling

## Undersampling



Examples of BAD sampling -> Aliasing

## Gaussian (lowpass) pre-filtering



G 1/8
G 1/4

Gaussian 1/2
Solution: filter the image, then subsample

- Filter size should double for each $1 / 2$ size reduction. Why?


## Subsampling with Gaussian pre-filtering



Gaussian 1/2


G 1/4


G 1/8

## Compare with...



## Gaussian (lowpass) pre-filtering



G 1/8
G 1/4

Gaussian 1/2
Solution: filter the image, then subsample

- Filter size should double for each $1 / 2$ size reduction. Why?
- How can we speed this up?


## Image Pyramids

Idea: Represent NxN image as a "pyramid" of $1 \times 1,2 \times 2,4 \times 4, \ldots, 2^{k} \times 2^{k}$ images (assuming $N=2^{k}$ )


Known as a Gaussian Pyramid [Burt and Adelson, 1983]

- In computer graphics, a mip map [Williams, 1983]
- A precursor to wavelet transform



## Gaussian pyramid construction



Repeat

- Filter
- Subsample

Until minimum resolution reached

- can specify desired number of levels (e.g., 3-level pyramid)

The whole pyramid is only $4 / 3$ the size of the original image!

## What are they good for?

## Improve Search

- Search over translations
- Classic coarse-to-fine strategy
- Search over scale
- Template matching
- E.g. find a face at different scales


## Sharpening

What does blurring take away?


$$
=
$$

Let's add it back:


## Unsharp mask filter



