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Abstract

Most published research on system behavior and
workload characterization has been based on either
Unix systems or large, usually IBM, mainframe sys-
tems. It is reasonable to believe that user behaviors
and workloads are different for PC systems. Fur-
ther, the aspects of system design and most need-
ing study have changed from the mainframes domi-
nant in the 1960s and 1970s, and the Unix systems
that became so popular in the 1980s to the PCs
that seem to be rapidly taking over many or most
aspects of computing. This paper focuses instead
on Windows95, which is currently the most widely
used computer operating system. We discuss Win-
dows system tracing and workload characterization.
Following the discussion of our Windows95 tracing
methodology and the description of 36 sets of traces
collected from Intel Pentium based PCs running the
Microsoft Windows95 operating system, we present
some descriptive and statistical characterization of
this data, directed principally at user behavior and
file system behavior.

1 Introduction

All aspects of computer system design and op-
timization depend strongly on knowledge of or as-
sumptions about the workload that the system is
intended to or does support. Multi-user time-
sharing computer systems such as UNIX systems
and mainframe computer systems have been exten-
sively studied. Much comprehensive system work-
load analysis has been done on these systems; e.g.
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[1] [2] [3]. There is far less data and analysis avail-
able for personal computer workloads, the subject
of this paper.

We have/had in mind a number of research stud-
ies directed towards the PC environment, and ac-
cordingly, our first step has been to write and run
a tracer for such systems. Since the most dominant
PC operating system and architecture are Microsoft
Windows95 and Intel x86 based Architecture (IA)
respectively, we chose Intel based PCs running Win-
dows95 as our tracing target systems. We will call
Intel based PCs running the Microsoft Windows95
operating system as “PC systems” in the rest of this
paper.

The second step is to analyze the trace data and
provide descriptive and statistical characterization
of this data, directed principally at user behavior
and file system behavior. Accordingly, our trace
collects records of user and file system activity.

We believe that traces taken from PC systems
will differ from those taken from multi-user time-
sharing systems in a number of ways:

First, the workload on a PC system with a sin-
gle active interactive user is likely to be different
from the other systems, both because there is only
one user, and because the applications are likely to
be different. The interleaved activity of a number of
users will differ from the individual streams of activ-
ity. Even in the case of a single-user Unix worksta-
tion, it is common to have multiple processes active
at a given time. Further, we believe that PC users
are likely to run much shorter and less computation
intensive jobs. The PCs are more likely to be used
by the users for their private work. This is very
much the case for those home PC users.

Second, time-sharing UNIX operating systems
and Windows95 operate differently. Unlike UNIX,
Windows95 was designed to be backward compati-
ble with old software applications including old MS-
DOS applications and 16-bit Windows applications.
For instance, Windows95 uses an improved version
of the MSDOS-FAT format file system, and Win-




dows95 also supports several different memory mod-
els. Windows95 is not a true preemptive operating
system nor is it a secure operating system, and it
is not as stable as larger time-sharing systems as
well. [4] [5] [6] [7]

Third, time-sharing systems and PC system do
not always share the same type of application soft-
ware. Large time-sharing system applications are
more likely to be scientific computation oriented
or enterprise server software. The most popular
UNIX workstation testing workload are the SPEC
benchmark suite [8] and TPC database benchmark
suite [9]. PC software applications are more likely
to be graphic user interfaced (GUI), personal infor-
mation processing intended, and more interactive
with the users. MS-Word and Netscape are such
examples.

Finally, hardware and software developers of
workstation and mainframe computers often em-
phasize such issues as performance, capacity and
reliability. In comparison, PC developers are more
concerned with cost, convenience, power consump-
tion, etc.

For this first step of our project, we design and
develop a Windows95 PC system tracer, WMonitor,
which collects traces of user and file system activi-
ties. Our tracing guideline is to achieve a reasonable
compromise among the requirements of comprehen-
siveness, flexibility, minimum user interference and
simplicity of analysis.

The selection of users to trace has a significant
impact on the characteristics of the workload col-
lected. In this paper we report on traces collected
from 36 real users, including engineers, scientists,
managers, home users and school students, using
a variety of system configurations. In a few cases,
we’ve broken out our analysis by user type.

For the second step of our project, we will focus
on two major aspects of computer system workload
in our analysis: user input behavior and file system
workload characteristics. The analysis presented in
this paper includes an overall summary, and then
focuses on specific topics related to user input be-
havior and file system operation. Qur user input
behavior study covers such major user input char-
acteristics as commonly used applications, user idle
periods and command clustering, etc. The file sys-
tem workload study considers the distribution of
different file system calls, file system IO throughput,
file system idle periods, file read/write size distri-
butions and file size distributions. We also compare
our analysis to some existing file system analysis
results based on UNIX file systems [2] [3] [10] and

mainframe computer file systems [1].

The rest of this paper is organized as follows:
Section 2 briefly discusses some previous related re-
search. Section 3 discusses our tracing methodol-
ogy, and gives the trace description. We provide in-
formation information about the users and systems
being traced in the same section. Section 4 provides
some general characterization of the traces analyzed
in this paper. Section 5 analyzes user input behav-
ior, and Section 6 characterizes the system workload
from the file system perspective. Section 7 provides
some miscellaneous analysis results and discusses
the limitations of our analysis. Finally, section 8
summarizes our results and discusses directions for
future work. In the appendices we provide a sys-
tem overview of Windows95, a detailed description
of our trace data formats, and some more detailed
analysis, as shown in a few additional figures and
tables.

2 Related Work

In this section, we briefly reference some related
system tracing and workload studies. We concen-
trate on related work by these others and others at
Berkeley, but cite some other work as well; this is
a small fraction of the dozens to hundreds of trace
based workload studies. We also briefly highlight
the major differences and similarities between those
related studies and our Windows study.

2.1 Studies of UNIX Workstations
and Mainframe Computers

Ousterhout et al [2] [3] traced the Sprite
distributed file system via kernel instrumenta-
tion. They measured application-level file access
patterns, throughput and distributed system file
caching behaviors. Da Costa [10] discussed a BSD
4.2 UNIX file system tracing package and presented
some summary statistics. See also [11]. Among
the topics considered were general file system activ-
ity statistics, file IO transfer size and duration, and
IO buffer allocation.

Kotz et al [12] traced and characterized the
file system workload on a scientific multiprocessor
system. Spasojevic et al [13] studied the perfor-
mance and workload characteristics of a wide-area
distributed file system. They profiled wide-area
file system storage capacity, volume activity, client-
server interaction behaviors, cache performance and
availability. Smith [1] studied long term file access
patterns on a mainframe computer system.




Becker et al [14] analyzed UNIX paging behav-
ior and concluded that paging activity accounts for
15% to 21% of all disk block accesses. Our anal-
ysis yields a lower result for this statistic; our re-
sults are also lower than the figures shown in [2]
and [3]. Ruemmler [15] used a kernel-level trace fa-
cility built into HP-UX to trace physical disk I/Os,
and described the direct disk access patterns. His
study found that majority of all disk operations are
writes (56% to 58%), disk accesses are rarely se-
quential, and the majority of disk accesses are re-
sulted from non-user data accesses(swapping, meta-
data and program execution).

Zivkov et al [16] used several sets of main-
frame computer traces to characterize disk refer-
encing patterns and study disk caching. Their DB2
disk reference traces were collected from IBM DB2
customer sites using DB2PM, an IBM DB2 perfor-
mance monitoring package, and GTF, an IBM gen-
eral tracing package. Their IMS disk referencing
traces were generated from IMS online system log
files. Their GCOS traces were collected by instru-
menting the GCOS operating system.

The above projects were primarily focused on
the file systems and disk IOs of time-shared multi-
user computer systems. Similarly to our Win-
dows95 file system study, most of these IO system
study projects were also done at the logical level (ex-
cept for Ruemmler’s research), and file system call
function names and logical addresses were recorded
with time stamps. Most sets of traces were similar
to our traces, which cover the file system activities
in a period of a few days to one week. Our study is
different from these studies in that our targets are
single user PC systems.

Nolan et al [17] presented a workload character-
ization based on the user workload collected from
Xerox Sigma timesharing systems. Hanson et al [18]
used a modified UNIX C Shell to trace the user in-
puts in the UNIX shell command environment. She
also combined UNIX accounting information with
the user input data in her research on UNIX shell
usage characterization. The command line user in-
terface has largely been replaced by the graphic user
interface in a modern operating system environ-
ment, such as MS-Windows, MacOS and OpenWin.
Compared to Hanson’s UNIX shell usage study, our
Windows study also collects information on mouse
inputs and window switches in addition to the key-
board inputs.

2.2 Studies of PC systems

Douglis et al [19] studied the file system level
disk activities of Apple Powerbook computers.
Lorch et al [20] profiled the system resource usage
on Power-PC systems. These are both MacOS spe-
cific.

Li et al [21] studied file system level disk activ-
ities of DOS/Windows-3.1. Zhou et al [22] also
traced the user and disk activities of Windows-3.1.
These tracing tools used the DOS TSR (terminate
and Stay Resident) technique, which is rarely used
in Window95. In Windows95, TSR programs can
only run at DOS prompt. The roles of TSR pro-
grams have been replaced by virtual device drivers.

Intel Corporation [23] developed a Windows
“PowerMonitor” to monitor the Windows system
device drive access and the processor activities.
The implementation of Intel’s “PowerMonitor” has
taken advantage of the features of a performance
counter inside Intel’s Pentium processors. Similar
to Intel’s “PowerMonitor”, Chen et al [24] pre-
sented a Windows tool which studies the Pentium
processor’s performance. These two Pentium PC
tools are primarily used to monitor the processor
activities. They only provide profiling informa-
tion. Using the performance measurement provided
by their Pentium tool, Chen et al [24] compared
system performance of different operating systems:
Windows31, WindowsNT and NetBSD performance
measurements. Their study indicates a significant
part of the cost of system functionality in Windows
systems is due to the OS structures rather than the
API required by Windows applications.

Microsoft also provides a system performance
monitor tool with Window95, “System Monitor”,
or “SysMon” [25]. It provides very rich perfor-
mance metrics on a variety of system resources:
file system read/write, virtual memory page faults,
swapfile use, disk cache, processor usage, free mem-
ory, thread usage, etc. In comparison, our Win-
dows tracer only monitors the logical level file sys-
tem calls and user input activities. However, Win-
dows95 “SysMon” has a major disadvantage, like
Intel “PowerMonitor”, is it is a real-time monitor
with no data capture capability.

Lee et al [26] traced and characterized several
Windows applications under Windows NT on the
x86 processor. They used a binary instrumenta-
tion engine, Etch, for the x86-Windows NT in their
trace collection. Instruction set level desktop appli-
cation performance was studied from the perspec-
tives of computer architecture. These desktop ap-
plications were contrasted to the programs in the




integer SPEC95 benchmark suite.

3 Tracing Windows95

In order to obtain a valid set of traces which can
appropriately represent personal computer work-
load characteristics, three major tracing issues need
to be addressed: first, what information should be
monitored and recorded; second, how to trace Win-
dows95 and get all the information we need; third,
what types of users and machines should be traced.
In Appendix I, we provide an overview of the Win-
dows95 operating system and those application pro-
grams shown in our study. We explain the detailed
format of our trace data in Appendix IIL

3.1 Tracing Objects

In this subsection, we discuss what data we col-
lect and why. This tracing project was begun with
three end-uses in mind for the data. First, we are
studying power management in portable computer
systems (see e.g. [20]), and we wanted to collect
those activities reflecting certain aspects of power
consumption-user activity and disk activity. Sec-
ond, we are interested in extending some of our
previous studies in disk caching [16] [27] to PC-type
systems. Third, we are also interested in character-
izing the PC workload, which is the focus of the
work described in second major part of this paper.

As we discussed earlier, we expect that the work-
load we observe on the PC will differ from previ-
ously studied systems: the operation of personal
computer systems are more tightly coupled with
user activities (for instance, these are almost no
batch or background jobs in PC workloads); the
PC workload is more bursty and more GUI oriented;
Windows95 usually does not behave in an optimized
way because it was designed to support both 32-bit
Windows applications and old MS-DOS as well as
16-bit Windows applications.

Since our goal is to collect a valid trace set for
PC workload characterization, we do not emphasize
the impact of configurations or physical issues. Our
traces include two parts: user activity traces and file
system traces. User activity traces consist of user
keyboard input traces, user mouse input traces and
active application software traces, i.e. the traces of
user-input-focused windows where the user mouse
inputs and keyboard inputs are accepted. Since the
virtual memory swapping of Windows95 is imple-
mented on top of the file system, our file system

traces also include virtual memory swapping infor-
mation. Our file system traces contain logical file
system accesses; physical addresses could be derived
with file maps.

In addition to satisfying the requirement of ob-
taining valid traces, our tracing should also min-
imize tracing overhead and any interference with
the user, and the trace data should be easy to use
in analysis. We recognize that these requirements
conflict with each other. In our tracing design and
implementation, we believe that a reasonable com-
promise has been achieved.

3.2 WDMonitor, a Windows95 tracer

In this section, we describe how we use Win-
dows95 standard system services to obtain the user
activity traces and file system traces. We will use
one figure and several examples to illustrate the way
our tracer, WMonitor, works. In appendix I, we
provide a description of the Windows95 operating
system; a reader not familiar with the appropriate
Microsoft software may wish to read that section
first.

Our Windows95 system tracing relies on two
standard Windows OS features: our user activity
tracing relies on the Windows message hook proce-
dure support, and our file system tracing relies on
Windows95’s installable file system support.

For user activity tracing, we rely on the fact that
windows inter-process communication heavily de-
pends on Windows message passing. User applica-
tion processes accept user inputs, such as mouse ac-
tions and keystrokes, in the form of Windows mes-
sages generated by the Windows OS. Windows hook
is a mechanism by which a function can intercept
user input messages or system event messages be-
fore they reach an application. The function can
act on events, modify, or discard them. Functions
that receive event messages are called filter func-
tions and are classified according to the type of
event message they intercept. For instance, a fil-
ter function might want to receive all keyboard or
mouse event messages. For Windows to call a filter
function, the filter function must be attached to a
Windows hook, such as a keyboard hook. Windows
provides the APIL of SetWinodwsHookEz and Un-
hook WindowsHookEz to the users to maintain and
access filter functions. Attaching one or more filter
functions to a hook is known as setting a hook. If
a hook has more than one filter function attached,
a chain of filter functions is maintained in the Win-
dows OS kernel. The most recently attached func-



tion is at the beginning of the chain.

Three Windows message hooks are used:
WM_KEYBOARD, WM_MOUSE, and WM_CBT
(Computer Based Training), to monitor keyboard
inputs, mouse inputs, and switches of user-input-
focused window, respectively. Since WMonitor mes-
sage filter functions will be mapped into different
logical address spaces of other applications where
the message will be sent to, the WMonitor message
filter functions need to be implemented in a dy-
namic linked library (DLL). Regular Windows EXE
applications can be mapped into only one logical
address space.

For file system tracing, we rely on the fact that
Windows95 allows third party software and hard-
ware vendors to write their own FSDs for their
products as part of Windows95’s file system. These
FSDs are in the format of Windows virtual device
drivers (VxDs). This file system support is also
called Windows95’s installable file system support.
These installable file system VxDs can be dynam-
ically loaded into the Windows95 kernel. All file
system calls will be visible to the installable file sys-
tem VxDs. A file system call will be processed by
an installable file system VxD which claims to pro-
cess this call. Our file system tracing part is written
as such an installable file system VxD. However, it
does not claim any processing responsibility except
examining each file system call.

Figure 1 shows the three major WMonitor mod-
ules and related system blocks. It also illustrates
the control flow of tracing events. These three parts
of WMonitor are:

e WM-VFS.vxd — a Windows95 installable file
system virtual device driver which monitors
the file system calls;

e MsgHK.dll - a dynamic linked library format
module which includes a mouse message hook
procedure, a keyboard hook procedure, and a
window switch message hook procedure;

e WMonitor.exe - a Windows95 32-bit applica-
tion which contains a tracer console module
(the WMonitor graphic user interface part), a
tracing message processing module, a buffer
management and online analysis module, and
a WM-VEFS user level call-back procedure.

For the example of a mouse input: after a user
inputs a mouse click, Windows95 will generate a
mouse input message and put it into the Windows
mouse message queue. Before this message reaches
the current user-input-focused window, the WMon-
itor mouse message hook procedure has examined
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Figure 1: Windows95 Tracing Tool WMonitor Module
and Related System Block Diagram

this message. A mouse tracing message will be
generated from the original mouse message by the
WDMonitor message hook procedure. The mouse
tracing message will be posted to the WMonitor
tracing message processing module where this trac-
ing message is processed. In the case of a file sys-
tem call: after an application makes a file system
call, and before the installable file system manager
sends the call to a file system driver which will pro-
cess it, WM-VFS.vxd will read this call and gen-
erate a user level procedure call back to WMoni-
tor.exe. This WMonitor user level procedure will
post a corresponding file system tracing message to
the WMonitor tracing message processing module
where this tracing message is processed similarly to
the mouse tracing message. Every file system call
due to WMonitor trace dumping, which is called as
tracer file system call in the rest of this paper, is
also recorded for the tracer overhead analysis.

It is very important that the tracer does not
affect the workload and regular user behavior.
WMonitor is so designed that it will be automati-
cally initiated upon the start of Windows95. There
is no need for the users being traced to operate the
tracer, since it runs in the background. WMoni-
tor’s trace buffer is less than 1 MB. As the reader
will see in Table 1, all the PCs being traced have at
least 16MB main memory and sufficient disk space.
Therefore, WMonitor’s file system calls have little
impact on the regular user activities.

WMonitor is written in C++ and x86 assembly
language. Microsoft Visual C++ 2.0 and Microsoft
Drive Drive Development Toolkit (MS-DDK) for
Windows95 are our tracer development tools. We
also referenced Walter Oney’s Windows95 VxD
sample code. [5] The WMonitor conmsists of 57K




lines of C++ and assembly language code. WMon-
itor was developed at Intel Corp. when the author
worked there as a summer intern.

3.3 Trace Description

In this subsection, we explain the trace file for-
mat and the collected traces. There are two types
of trace files: system activity profile log files and
system activity trace record data files. WMonitor
system profile log files are named as “WMO001.log”,
“WM002.log”, ..., “WM999.log”. WMonitor
trace record files are named as “WMO00l.dat”,
“WMO002.dat”, ..., “WM999.dat”. 001, 002, ..., 999

are the three-digit trace sequence numbers. Each

sequence number corresponds to a contiguous pe-
riod of time when the traced PC is powered on and
WMonitor is enabled. Both types of trace files are
ASCII format text files.

3.3.1 WMonitor system profile logs

System activity profile log files record the fol-
lowing information: USER.D, StartDate, Start-
Time, StopDate, StopTime, TotalSectionTime,
and activity profiling information. The Start-
Date/StartTime and StopDate/StopTime are the
calendar date/time when WMonitor starts and
stops instrumenting the system activities, respec-
tively. TotalSectionTime is the total trace calendar
time in seconds between start time and stop time.
Profiling information records the number of tracing
events in each tracing interval; the default tracing
interval is 5 minutes. The interval can be set by
modifying the LOGINTERVAL record in WMoni-
tor initialization file “WMonitor.ini”. The profiled
trace events include keyboard events, mouse events,
window switch events, file system read events, file
system write events, file system open events, file
system close events, file system seek events, file sys-
tem delete events, file system directory call events,
file attribute events, paging read events, paging
write events, other file system call events, and to-
tal tracing events. The last activity profiling infor-
mation record is the total numbers for each type
of profiled tracing events. The format of date
record is MM:DD:YY. The format of time record
is HH:MM:SS. All the numbers in the log files are

decimal numbers.
The following file is a WMonitor system profile
log example:

USER_ID: 380
StartDate: 08/07/97
StartTime: 17:37:41

Time Keybd Mouse WinEvnt FRead FWrite ... Total
17:42:41 409 251 23 7556 1056 ... 27699
17:47:41 89 33 8 422 73 ... 2005
17:52:41 131 0 0 0 0 L..131
17:57:41 0 ] 0 1 0 el 2
18:02:41 238 6 0 0 0 ... 244
Total: 894 339 41 7983 1129 ... 30177

StopDate: 08/07/97
StopTime: 18:16:05
Total_Section_Time: 1704 seconds

If the users are only interested in the system ac-
tivity profiling information, and the details of each
tracing event can be neglected, the log files are suf-
ficient enough to serve this purpose, and thus trace
record data files can be disabled. By disabling trace
record data files, the tracer overhead and trace disk
space usage are greatly reduced, and the system ac-
tivity statistics and profiling information can also
be obtained more directly and quickly. For example,
if tuning the standard workloads in system bench-
marking is the only tracing goal, the log file should
be sufficient.

3.3.2 WDMonitor trace record data files

Trace record data files record the following data:
USER.D, StartTime, StopTime, and the trace
records. The StartTime and StopTime read the
Windows95 internal millisecond counter when the
WMonitor starts and stops instrumenting the sys-
tem activities. The Windows95 internal millisecond
counter is the elapsed (integer) time in milliseconds
since the Windows95 system’s most recent start.
Each trace record includes four data fields: time
stamp, trace type, function name, and information
detail. We will further discuss the trace record
structure in Appendix II. We can determine the cal-
endar date and time for StartTime, StopTime and
each trace record based on the time-stamp and the
readings of StartTime record and StartDate record
in the corresponding WMonitor system profile log
file.

The following file is a WMonitor trace record
data file example:

USER_ID: 761
StartTime: 9E9C4F

Time Type Funct Details

130 3 OPEN C: [223] \DAT\WMONITOR.INI

0 3 WRITE C: [223] 93

0 3 CLOSE C: [223]

0 3 SEEK C: [2A8] 4B400:B

0 3 READ c: [2a8] 200

A 2 [e54] C:\WMONITOR\BIN\WMONITOR.EXE

(] 3 READ C: [271] 1000 MM

0 3 FATTR C: \WINDOWS\SYSTEM\MFC40LOC.DLL
0 3 FDOPE  C: \WMONITOR\BIR\*.*



DB 0 K_DN 11

96 0 K_UP 91

0 3 FLCKS ¢C: [26B]

0 3 RENAM C: \DAT\DATA.ZIP \RECYCLED\DCO.ZIP
0 3 DIR C: QLGD \WMORITOR\BIN\MSGHK.DLL

0 3 DELET C: \RECYCLED\DESKTOP.INI

0 1 START_MV

9E 1 STOP_MV

Stop_Time: 1D41D3C

With detailed information and time stamps for
every trace event available, WMonitor trace record
data files can be used in comprehensive workload
analysis and trace driven simulation. Except for
the calendar date and time information, WMonitor
system activity profiling information log files can be
reproduced from the trace record data files.

Detailed information on the trace records is
found in Appendix IL

3.4 Machines and Users Studied

There are many different types of PC users,
ranging from game players to engineers, and they
may differ in their workload profiles. Laptop PC
users may also behave differently from Desktop PC
users. Thus it is very difficult to define or select
“typical” PC users or to collect a “typical” PC
workload. We have attempted to collect as large
a number of user traces as possible, over as wide
a range of user types and machine types, includ-
ing both laptop and desktop PCs, as possible. The
users being traced include engineers, managers, as-
sistants, students, home PC users, and some oth-
ers. The workload being traced includes software
development, computer aided design, logic synthesis
and simulation, document writing, Web browsing,
remote-dialup, PC game playing, etc.

Our Windows95 traces used in the paper were
collected from a few home PCs and a number of in-
dustry PCs in several corporate sites including Intel
Corp., Quantum Corp., Sony Corp., Toshiba Corp.,
and Fujitsu Corp, each of which has funded this re-
search at some time. Most of our trace data was
collected in the year of 1997. 36 sets of traces are
discussed here. Each set of traces was collected from
a separate PC machine/user over the period of a
few days to a few weeks. Since the portion of the
time that each machine was powered on varied a
great deal, our tracing time for each user also varies
widely.

Table 1 shows some characteristics for each ma-
chine and user traced. We show both calendar
time (“Cal-TM”) and tracing time (“TrcTM”) in
the table. Our calendar time for each user/machine

is measured by the number of hours between the
date/time of the first record and that of the last
record. Our tracing time for each user/machine is
measured by the number of hours when the ma-
chine was powered on and the tracer was enabled.
“Ratio” is the ratio of tracing time to calendar time.
“TrcEvent” in the table is the total number of trace
events for each user/machine being traced. Aver-
ages (arithmetic mean) and standard deviations are
also shown, as appropriate.

4 Workload Overall Statistics

Here we discuss the overall PC workload statis-
tics over our trace data sample. Table 2 shows the
trace size. “Number of Trace Files” is the total
number of trace data files which are used in our
analysis. As shown in the table, the average size
of compressed traces per user is about 343.6 / 36
= 9.5M bytes. The tracing time is defined as the
duration during which the traced PC was powered
on and the tracer tool was enabled. The average
tracing time per user is 3092 / 36 = 85.9 hours. In
the same table, we show the fraction of time that
the user status can be assigned to the categories
of: busy, active, thinking, and inactive. We de-
fine a trace period as an “idle” period if no trace
event happened within this period of time. We de-
fine “busy” time as a period of the trace during
which there was no idle period longer than 0.5 sec-
ond. We define “active” time as the duration of
all the idle periods each longer than 0.5 second and
shorter than 5 seconds. We define “thinking” time
as the duration of all the idle periods each longer
than 5 seconds and shorter than 5 minutes. We de-
fine “inactive” time as the duration of all the idle
periods each longer than 5 minutes. We can see that
“thinking time” accounts for a significant portion of
the entire tracing time. This classification is useful
for studies of power management, since various sys-
tem components are typically turned off after cer-
tain periods of inactivity. For comparison, we also
show the total “tracing-off” time in the same table.
Tracing-off time is the total tracing calendar time
minus the total tracing time. Tracing-off time cov-
ers the period when either the tracing target system
was powered off, or the tracer was disabled by the
user.

Table 3 shows the number and rate of trace
events. The data shown in the table are the arith-
metic mean values over the 36 trace sets. (Le.
the averages for each trace are then averaged.)
File system trace records account for 94.4 percent




Number|| Brand Model Type Mem | Disk (C:/D:/E:)| Cal-TM' TrcTM® | Ratie® |TrcEvent®| Corp. User-Type
1 Toshiba | Protégé-610 laptop 16M | 687TM 199.5h |30.96h [16% |1116999 | Intel Engineer/Hdware.
2 Toshiba | Protégé-610 laptop 16M | 687TM 1028.2h | 54.77h [05% |1990876 | Other HomeUser/Pilot
3 Digital | HiNote-Ultrall | laptop 64M | 1372M 3442h | 11647h |34% |8122170 | Fujitsu | Director
4 Fujitsu | Lifebook-v655tx | laptop 48M | 1293M 503.5h | 153.50h | 30% |4753461 | Fujitsu | Manager
5 Fujitsu | Lifebook-v655tx | laptop 48M | 1293M 7193 h | 19521h [27% 4619375 | Fujitsu | Manager
6 Fujitsu | Lifebook-v655tx | laptop 48M | 1293M 185.1h |36.74h [20% 654949 | Fujitsu | Manager
7 Fujitsu | Lifebook-v655tx | laptop 48M | 1293M 201.5h |46.16h |23% |1129639 | Fujitsu | Engineer/IC
8 Fujitsu | Lifebook-v655tx | laptop 48M | 1293M 2155h | 60.97h |28% 605928 | Fujitsu | Engineer/Docmnt.
9 Fujitsu | Lifebook-v655tx | laptop 48M | 1293M 715.1h | 179.68h | 25% |4188428 | Fujitsu | Engineer/Cad
10 Toshiba | Pentium-PC laptop 24M | 500M 2153h | 15.13h |07% 165920 | Toshiba | Engineer/IC
11 Toshiba | Satellite-110ct laptop 24M | 775M 2150h ]3693h |17% |613989 | Toshiba | Engineer/Docmnt.
12 IBM Thinkpad 760ed | laptop 32M | 1.2G 5355h | 64.98h |12% 6745879 | Ahold Manager
13 Dell Latitude CP233 | laptop 64M | 3.8G 301.4h | 80.69h |27% |10116647| 3com Engineer/Docmnt
14 ‘Winbook | XL233 laptop 32M | 3.0G 1256h | 23.35h [19% |2728398 | Quantum| Manager
15 IBM Thinkpad 560 laptop 40M | 2G 316.5h |[526h 17% |17921936| Quantum | Marketing
16 Dell Optiplex GXpro | desktop | 96M | 2G/1G 510.0h | 77.80h |15% |14371370| Quantum | Manager
17 Dell Optiplex GXpro | desktop | 96M | 2G/1G 1702h | 27.62h | 16% |9004396 | Quantum | Web-Master
18 PC Pentium-266 desktop | 64M | 6.4G/3.1G 331.5h | 146.02h |44% [13924018| Other Consultant
19 PC Pentium-120 desktop | 24M | S00M/4G 1285h | 21.22h |17% 1216834 | Intel HomeUser/Engnr
20 PC Pentium-90 desktop | 32M | 1.2G 86.3h 19.63h |23% 648849 | Intel Researcher
21 Dell Dimention-133 | desktop | 32M | 1547M 9724h | 81.91h {08% 1447485 | Other HomeUser/Studnt.
22 Compag | Prolinea-5150 desktop | 16M | 2G 430.5h | 40.28h |09% |3648197 | Sony Engineer/Sftware.
23 Sony PCV-120 desktop | 64M | 2G/2G 3742h |27.82h |07% (2603819 | Sony Engineer/Sftware.
24 Sony PCV-120 desktop { 64M | 2G/2G 438.6h | 12038 h | 27% 14246332 | Sony Engineer/Sftware.
25 AST MS-T 5166 desktop | 64M | 2G/2G/1G 459.7h | 51.60h |11% 9415271 | Sony Engineer/Sftware.
26 Gtw2k | P5-166 desktop | 64M | 1.5G 377.8h | 307.98h |82% 9475388 | Sony Engineer/Hdware.
27 Sony PCV-120 desktop | 32M | 2G 380.3h | 352.98h |93% [10053795! Sony Engineer/Video
28 Sony PCV-120 deskiop | 32M | 2G 378.7h | 100.96h |27% [2041658 | Sony Manager
29 Sony P55¢ desktop | 32M | 2G/2G/1.6G 191.8h | 56.90h |30% |9166259 | Sony Engineer/Sftware.
30 Toshiba | Pentium-PC desktop | 24M | 500M/500M [ 216.1h | 52.30h |24% |5240669 | Toshiba Assistent
31 Toshiba | Pentium-PC desktop | 48M | 500M/500M [ 230.8h | 29.96h |13% |2482814 | Toshiba Engineer/CAD
32 Toshiba | Pentium-PC desktop | 64M | 1.2G 215.6h |46.27h |21% 954125 | Toshiba | Engineer/Progmer
33 Toshiba | Pentium-PC desktop | 48M | 1G 238.1h |359.49h |25% |1776593 | Toshiba | Engineer/Progmer
34 Toshiba | Pentium-PC desktop | 24M | 500M/1.5G 188.6h |42.02h |22% 5332521 | Toshiba | Engineer/Docmnt
35 Toshiba | Pentium-PC desktop | 48M [ 1.2G 596.1h |49.17h |08% |8067977 | Toshiba | Engineer/CAD
36 Toshiba | Pentium-PC desktop | 48M | 500M/500M | 2168h | 56.82h |26% [2316542 | Toshiba | Clerk
Average (arithmetic mean) 359.8h 81.0 h 23.8% |5080820
Standard deviation 223.6 71.1 0.178 4504590

Table 1: Profile Data for Machines and Users Traced

| Category [ Statistics |
Number of Users 36
Number of Trace Files 1894

Total Data Size
(compressed data size)

4801 M bytes
343.6 M bytes

Total Records

184,095,396

Total Tracing Time
-BusyTime (idle<0.5s)

-ActiveTime (0.5s<idle<bs)
-ThinkingTime (5s<idle<5m)

-InactiveTime (idle>5m)

3,092.0 hours
438.3 hours
960.4 hours
1245.5 hours
448.8 hours

Tracing-Off Time

9860.8 hours

Table 2: Trace Data Overall Statistics for 36 Traces

of the total number of trace records. “KeyRec”,
“MouseRec”, “WinRec”, “FSysRec” and “VMRec”
in the table represent keyboard trace record, mouse
trace record, window switch trace record, file sys-
tem trace record, and Windows95 virtual memory
file system call trace record, respectively. In this ta-
ble and the rest of the paper, we will use the term
“file system calls” for simplicity whenever we dis-
cuss the regular file system calls, but virtual mem-
ory operations and tracer file system calls are not
included. The PC users input by means of a mouse
device as frequently as by a keyboard. The PC users
switch from one user-input-focused window, i.e. a
foreground Windows process, to another window as
often as about once per minute. File system calls
invoked by virtual memory activities, including pag-
ing and memory swapping, account for only a small
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part of all file system activities.

[ [ Record# | Percentage | Rec#/h |
KeyRec 3688020 2.05% 1192.7
MouseRec | 3345516 1.86% 1082.0
WinRec 167184 0.09% 54.1
FSysRec 169528248 | 94.44% 54827.3
VMRec 2776680 1.55% 898.0
Total 179505648 | 100% 58054.1

Table 3: Trace Event Type Statistics (“Record#” is the
number of one type of trace records, “Rec#/h" is the
number of trace records per tracing hour.)

Distribution of System Busy Period as function of idle length
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Figure 2: System Busy Time Distribution as Function of
Maximum Idle Length

Figure 2 shows the busy period distribution as
a function of the longest idle interval contained
within the busy period. Three busy periods are
shown: that for the user (input) only, for the file
system only, and for the system as a while. The Y
axis is the cumulative fraction of busy time over
the total tracing time, given a certain idle time
length. For example, consider the case in which
the user/file_system/overall system is defined to be
busy when when no user/file_system/overall system
idle period longer than 400 seconds (x=400) occurs,
then the cumulative user input busy time is about
50%, the cumulative file system busy time is about
81%, and the cumulative overall system busy time is
about 83%, respectively. As may be seen, user idle
periods are more frequent and longer. Since the file
system trace records constitute more than 90% of
all trace records, and since the file system idleness

pattern has fewer file system idle periods with long
idle length, the overall system idleness pattern is
very close to the file system idleness pattern. The
steps on the curves in the figure are caused to some
extent by automatic periodic events in the system;
these are discussed later in this paper.

From the window switch traces, we are able to
determine the names of the most frequently ac-
cessed Windows applications. Table 4 lists some
of the application examples. We can roughly di-
vide these applications into six categories, which are
listed in the same table.

Category | APPLICATION (exe dll) |

EXPLORER, SHELL32,
COMDLG32, WINHELP,
MPRSERYV, ...
WINWORD, ACCESS,
POWERPNT, EXCEL,
COREL70, ...

MSDEV, DDRAW, ...
NOTEPAD, CALC, ...
PHOTOSHOP, WINZIP,
ACRORD32, ...
NETSCAPE, IEXPLORE
MASM, QUICKEN, ...

Windows System

MS-Office/
Group-Ware

Engineering Tool
Misc. Tool

Internet Browser
Dos Application

Table 4: Traced Applications and Categories (application
files in the table are in the format of “exe” or “dlI")

We estimate which application is active by de-
termining which user-input-focused windows is ac-
tive. Note that this is only an approximation. First,
we do not know the exact time an application was
started and ended; the running time of an appli-
cation is estimated by the difference in the times
between when the window was entered (including
opened) and exited (including closed). The number
of times that an application is invoked is estimated
by the number of times that the associated user-
input-focused window was switched to. We also as-
sume that all trace events were contributed by the
application which had the user-input-focused win-
dow. For a single user PC system, we believe that
these are reasonable approximations, but as will be
seen later, some anomalies in the data will occur.

The trace event frequencies vary from one ap-
plication to another. For example, some have very
frequent user inputs, while some do many 10s. For
the most frequent of the over 2000 different applica-
tions observed in our 36 trace sets, we will provide
some simple statistics. For each application listed



in Table 5, there is a brief description in Appendix
1.

Table 5 shows information about 30 of the most
frequently run applications (“Application”). These
were selected based on the fraction of time that each
application was traced to be running (“Time”). In
the same table, we also show the average number of
times each application was invoked per hour (“In-
voked”), the rank numbers (“(r)”) for the top 15 ap-
plications — ranked by the frequency of invocation,
the average number of user keyboard/mouse inputs
per hour (“KeyEvnt” / “MouseEvnt”) while this ap-
- plication was running, the average number of file
system calls per hour (“FSCall”) for this applica-
tion, and the average number of virtual memory sys-
tem file system calls per hour (“VMFSCall”). These
numbers the averages over the 36 sets of traces.
The total of the column “Time” is 100%, and the
overall numbers for columns “Invoked”, “KeyEvnt”,
“MouseEvnt”, “FSCall”, and “VMFSCall” for all
applications are shown in Table 3.

Please note that there can be multiple active ap-
plications running, and the switching of user-input-
focused windows may not exactly match the switch-
ing of applications. Thus there exist some anoma-
lies in the table, such as the non-zero user keyboard
inputs for the SCREEN-SAVER application. Also
note that the number of mouse input events can be
affected by the non-user mouse movement events
generated occasionally by the Windows95 system.

A further breakdown of some of these statistics
for these applications, by user type, appears in Ap-
pendix ITI.

5 User Behavior

We discuss PC user input behavior in this sec-
tion. First we compare the activity of different user
types. Then we study the user input idle pattern.
Last, we consider the user input clustering behavior.

5.1 Types of Users

QOur traces were collected from two different
types of PCs: Desktop PCs and Laptop PCs. Ta-
ble 6 summarizes the trace event frequencies for
these two different types of PC users. The statis-
tics of these two types of users are quite similar.
Desktop systems do slightly more file system calls,
while laptop users have slightly higher user input
frequencies. Although the average main memory
size of laptop machines is slightly smaller than the
average main memory size of desktop machines, the
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virtual memory operations on laptop machines are

less frequent than desktop machines.

[ User Type | Desktop User |

Laptop User |

User# 21 15
KRec/h 1281 1042
MRec/h 838 1495
WRec/h 52 57
FRec/h 56289 52352
VRec/h 1008 712
MM 40MB 48.4MB

Table 6: Desktop User Vs. Laptop User (“User#t" is the
number of users in this category. “KRec/h", “MRec/h",
“WRec/h", “FRec/h”, and “VRec/h" are the total num-
bers of keyboard trace records, mouse trace records, win-
dow switch trace records, file system trace records, and
virtual memory trace records per tracing hour, respectively.
“MM” is the average main memory size.)

We also categorize the users into three types: en-
gineers, managers, and other. “Other users” include
secretaries, assistants, and home PC users. Ta-
ble 7 compares the trace record frequencies among
these three types of users. Managers show the low-
est frequency of keyboard input and the lowest ap-
plication change rate. Secretaries, assistants and
home PC users generate the most frequent events
in each category. We believe that the difference be-
tween keyboard input frequency and mouse input
frequency can be interpreted as follows: because
a keyboard is a more efficient tool than a mouse
for text input while a mouse is more efficient in
controlling /information browsing, the ratio of key-
board activities to mouse activities normally reflects
the ratio of the time the PC users spent on inputing
text to the time they spent on reading/browsing.

As we will also see in our user idle period anal-
ysis, the difference between different machine types
is small while the differences among different user
groups are more obvious. It appears that trace
event frequencies or user idle periods are more likely
determined by which user group or which workload
type, but not by which type of machine being used.
The higher rate of virtual memory operations of the
group of “Other Users” are due to both higher rate
of user activity and the smaller size of main memory
in this group of machines.



[ A# | Application [ Time | Invoked(r) | KeyEvnt | MouseEvnt | FSCall | VMFSCall |

1 SCREEN-SAVER 22.27% | 0.631 (15) 0.493 69.740 81851.281 91.126

2 MSDOS-PROMPT | 11.90% | 20.795 (1) 2287.842 | 2403.032 38302.695 1146.286
3 EXPLORER.EXE 8.75% 9.766 (2) 360.204 1178.353 56780.555 1905.136
4 WINWORD.EXE 7.27% 2.748 (4) 3768.675 | 1828.820 89175.586 3355.310
5 NETSCAPE.EXE 5.42% 1.914 (7) 894.104 1717.102 98169.844 1762.945
6 SHDOCVW.DLL 3.73% 2.964 (3) 608.463 2689.685 110360.680 | 4216.126
7 EUDORA.EXE 4.92% 0.875 (12) 736.941 643.741 26085.711 78.857

8 XVISION.EXE 3.86% 0.523 7694.424 | 226.582 57960.309 319.893
9 MSDEV.EXE 3.44% 1.671 (8) 3131.524 | 1251.985 69845.750 3572.495
10 EXCEL.EXE 2.52% 2.114 (5) 2351.149 | 3246.628 34757.672 1696.109
11 OUTLLIB.DLL 2.14% 1.066 (10) 2909.180 | 1066.946 148826.953 | 615.960
12 POWERPNT.EXE | 1.92% 0.613 1542.569 | 1768.188 53374.004 1913.137
13 XVL.EXE 1.71% 0.256 4011.402 | 577.732 4615.911 90.187
14 NOTEPAD.EXE 1.00% 0.486 3917.179 | 1644.862 19528.238 297.881
15 NLNOTES.EXE 1.32% 0.387 3602.648 | 1306.750 53022.855 1604.908
16 MSOFFICE.EXE 0.88% 0.452 4.067 391.209 76156.078 1339.221
17 EUDORA32.DLL 0.82% 0.694 (13) 596.353 380.499 17111.318 53.847
18 COMCTL32.DLL 0.33% 1.225 (9) 723.196 5067.785 152977.219 | 2395.858
19 WINHLP32.EXE 0.32% 0.681 (14) 296.368 3365.859 39658.922 1456.344
20 COMDLG32.DLL 0.27% 0.911 (11) 2827.191 | 5600.863 137626.312 | 4203.288
21 TELNET.EXE 0.41% 0.148 2668.629 | 278.863 8942.890 265.787
22 MSACCESS.EXE 0.24% 0.132 6142.746 | 2278.438 172882.156 | 564.209
23 SHELL32.DLL 0.27% 2.056 (6) 572.072 3376.698 284729.281 | 5505.349
24 VBE.DLL 0.21% 0.122 8407.045 | 793.665 36914.609 306.665
25 WINPROJ.EXE 0.20% 0.035 705.139 857.747 80627.891 192.924
26 SPIRIT.EXE 0.17% 0.012 0.000 98.654 37593.477 79.204
27 MAILNEWS.DLL 0.16% 0.105 8615.952 | 1727.342 8507.025 670.565
28 ACRORD32.EXE 0.21% 0.059 111.877 1661.644 109964.500 | 1355.485
29 MPRSERV.DLL 0.14% 0.174 1297.060 | 729.258 31022.410 424.266
30 RASAPI32.DLL 0.12% 0.335 498.163 1392.521 85277.273 1251.965
31 OTHER-APPS 12.66% | 14.781 1925.915 | 1651.421 93608.320 1629.434

Table 5:

The Most Frequently Used Applications (“A#" is the application number, “Application” is the application name,

“Time” is the percentage of each application was traced to the total tracing time, “Invoked(r)” is the number of times
each application was invoked per hour, “(r)" is the rank of the invoking count, “KeyEvnt/MouseEvnt/FSCall /VMFSCall”

are the counts of different events per hour.)

User Type | Engineers | Manager [ Others |
User# 23 8 5
KRec/h 1228 738 2127
MRec/h 847 1499 1598
WRec/h | 52 39 111
FRec/h 50598 52850 88623
VRec/h 812 623 2188
MM 45.9MB 50MB 32MB

Table 7: Comparison of the Trace Statistics among Dif-
ferent User Types
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5.2 User Idle Periods

User idle periods are an interesting topic of
study because if the user is not using the system,
various components can be powered down. In Sec-
tion 4, presented the idle period distribution for the
user input, file system and overall system. As may
be seen, the overall system is seldom idle for long,
whereas the PC users are idle (not generating any
input) for a large portion of the time. The cumu-
lative busy period for users is only about 50% with
an idle length less than 5 minutes.

Figure 3 illustrates the user input idle period
probability density distribution. Note that the
spikes at 3-minutes, 4-minutes, 5-minutes and 10-
minutes (180, 240, 300, and 600 seconds, respec-
tively) are not normal user behavior. The Win-
dows95 system sometimes posts a few mouse move-
ment messages for resetting the mouse position to
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an application window. For example, Windows95
will generate a few mouse movement messages to a
screen-saver program which is normally configured
to be activated after a user idle period of a few
minutes. Since these mouse input messages were
not from the real users, we can ignore these on-the-
minute probability density spikes. We will continue
the discussion in next section and give examples of
these automatic trace events in next section when
we discuss the file system idle period probability
density distribution.

Figure 4 compares the user idle period for dif-
ferent user types. The upper plot of Figure 4 shows
that there is not much difference between the desk-
top PC user idle period distribution and that for
laptop PC users, while the other plot shows that dif-
ferent user groups have somewhat different idle dis-
tributions: the secretary/assistant/homeuser group
has the fewest idle periods for long idle length and
the engineer user group has fewer idle periods than
the manager user group if we only consider the idle
periods shorter than one hour.

These two plots also agree with the comparison
of trace event frequencies shown in Table 6 and Ta-
ble 7. Please note that our analysis results are based
on only the period of tracing time when the ma-
chines were powered on, but not when the machines
ere powered down. Normally, a PC user would turn
off his computer at home but not at work when he
is not using them. Likewise, in the upper plot of
the figure, the variation between the curves on the
upper right corner is due to the fact that the lap-
tops are usually turned off when not being used.
Appendix III shows user idle behavior for different
applications.

Figure 5 illustrates the user input idle period
as a function of previous user idle period length.
Given a time series of user idle period lengths:
to,t1,t2, ...tn-1,%n..., the previous user idle period
length for the nth idle period ¢, is t,—1. The user
idle period distribution may vary as a function of
the length of the previous idle period. Figure 5
plots a set of cumulative busy period distribution
curves. Each curve corresponds to the distribution
for one previous idle length. For example, the lowest
curve is the user idle period distribution when pre-
vious idle is within 0.25 second. The next curve is
the distribution when previous idle is between 0.25
second and 0.5 second. The figure shows a clear
trend that the longer the previous user idle length,
the less chance that the next idle period will be a
long one. For example, it is unlikely that there is
only one user input event between two long user idle




periods.
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5.3 User Input Clustering

In this subsection, we discuss user input cluster-
ing patterns. Figure 6 shows the distribution of the
number of commands (i.e. application switches) in
a user busy period. Since a “busy period” is defined
as the period of time with no idle length longer than
a certain length of time, we can have different user
busy period definitions based on different user idle
lengths. Figure 6 plots user commands for busy pe-
riods with maximum idle length of 5 seconds, 30
seconds, 1 minute, 2 minutes and 5 minutes in any
busy period, respectively. X axis is the number
of commands in a busy period. The limit of each
bucket on X axis is [27,2" ! — 1].Y axis is the per-
centage of tracing time during which there were X
number of commands input by the user.

Figure 7 shows the distribution of the number
of user input events in a busy period. User in-
put events include keyboard input events (key_down
and key_up) and mouse input events (movement
and button events). As an example, consider the
curve for the one minute idle period (i.e. a busy pe-
riod is one with no idle period over one minute). For
23% of those busy periods, the number of user in-
put events was in the range of 4096 and 8191 (about
2048 to 4096 keystrokes assuming all user inputs are
keyboard inputs).

Table 8 shows the median numbers of com-
mands and user input events for different definitions
of the busy period.

Figure 8 shows the transition matrix for the 20
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Figure 6: Number of Commands in a Busy Period, for
varying busy period definitions.
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[ busy-period | commands user-inputs |
5-seconds 4 256
30-seconds | 36 320
1-minute 56 576
2-minutes 60 576
5-minutes 68 704

Table 8: Median Numbers of Commands and User Inputs
a Busy Period




the most frequently used applications. The columns
and rows in the matrix correspond to the appli-
cations in Table 5. The last matrix column/row
represents the category of all other applications.
Each entry in the matrix represents the number of
times that an application switches to another, per
10,000 application switches. For example, for every
10,000 application switches, there are 71 switches,
or 0.71%, on average, from EXPLORER.EXE to
NETSCAPE.EXE (matrix[3, 5]).

6 File System Activity

In this section, we first look at frequencies of
Windows95 file system calls. Next we analyze the
file system idle period patterns. Then we exam-
ine different file system function calls. We will also
study the READ, WRITE and OPEN file system
calls in more detail. Since Windows95 virtual mem-
ory paging and swapping operations are identifyable
file system operations, we also present data on vir-
tual memory file system calls. Last, we consider file
access patterns.

[ N# | TrcEvnt | Function Name | Perc.
1 SEEK FileSeek 31.06%
2 READ ReadFile 24.35%
3 FDNXT | FindNextFile 10.22%
4 WRITE WriteFile 5.14%
5 FDOPN FindFirstFile 4.10%
6 FNDCL FindClose 3.84%
7 OPEN OpenFile 3.84%
8 FATTR FileAttributes 3.77%
9 CLOSE CloseFile 3.67%
10 GDSKI GetDiskInfo 2.62%
11 |} IOC16 Toctl16Drive 2.33%
12 FTMES FileDateTime 1.84%
13 DIR Dir 0.90%
14 | QUERY | QueryResourcelnfo | 0.59%
15 SEARC SearchFile 0.44%
16 FLCKS LockFile 0.40%
17 | DSDIO DirectVolumeAccess | 0.32%
18 | DELET DeleteFile 0.16%
19 | FLUSH FlushVolume 0.13%
20 | COMMT | CommitFile 0.09%
21 OTHER | Other FS Calls 0.21%

Table 9: Most Used File System Calls (“TrcEvnt” is trace
event names; “Perc” is the percentage.)
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6.1 File System Call Distribution

Table 9 shows the percentage of each of the 20
most frequent file system calls out of the number of
total file system calls. The percentages are calcu-
lated by the following formula:

36 FunciionCallCount
user=1 Agg‘SCallCount * 100%

where FunctionCallCount is the count of a
given file system function call for one user and
AUFSCallCount is the count of total file system
calls for this user. The various file system calls are
further explained in Appendix I.

As may be seen in Table 9; SEEK accounts for
31.06% of the total file system calls. This function
call, however, is an advisory file system call, which
only manipulates metadata, i.e. the FAT table, and
a large portion of the FAT table is normally cached
in the main memory. Therefore the SEEK operation
does not have a significant impact on the disk 10
traffic. Its high frequency is the result of the FAT
format file system and Windows95 backward com-
patibility. An example is a frequently used SEEK
operation sequence: first SEEK to the beginning of
a file and then SEEK the end of the file. This se-
quence is used for fetching the whole list of FAT
table entries of this file into the main memory, and
it is also used for emulating old MS-DOS function
calls.

FindNextFile, FindFirstFile and FindClose are
directory searching functions. These file system
calls are very frequent because in the Windows GUI
environment, every file folder open is followed by a
set of “Find” file operations. This happens rarely in
a UNIX shell environment since normally a UNIX
shell user does not always issue a “ls” command
following every “cd”. FileAttributes, GetDiskInfo,
FileDateTime, and Dir are all directory and meta-
data operations. IoCtl16Drive is a simulated 16-
bit direct IO operation, used for backward compat-
ibility. CloseFile flushes out the buffered data to
the disks, updates the directories and releases the
file handlers. More interesting file system calls are
ReadFile, WriteFile and OpenFile. Our further file
system study is based on these three types of func-
tion calls.

Figure 9 shows the transition matrix for the 20
most frequently used file system calls. The col-
umn/row numbers in the matrix: 1, 2, 3, ... , 20
match file system function numbers “N#” in Ta-
ble 9. The matrix column/row number 21 repre-
sents all other file system calls. Each entry in the
matrix represents the number of times that the file
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Figure 8: Application Transition Matrix

system call in the column directly follows the call
in the row, per 10,000 file system calls. For exam-
ple, in every 10,000 file system calls, there are about
1581, or 15.81%, SEEKs which are directly followed
by READs.

6.2 File System Idle Periods

As seen earlier in Figure 2, unlike user inputs,
PC file systems are seldom idle for a long period of
time. As shown in the figure, the cumulative file
system busy time is about 82% of the total trac-
ing time for an idle length of 512 seconds or less;
i.e. during only 18% of the tracing time was the
PC file system idle longer than 512 seconds. Please
note this statement does not mean that a PC disk
drive seldom idles for long period of time. The Win-
dows95 file system caches file system data in the
main memory, and thus many operations do not
go to the physical disk. This Windows95 file sys-
tem caching, however, is beyond of the scope of this
paper. (See also Table 27 in Appendix III which
shows the measured file system idle behavior with
logarithmic idle lengths.)

Figure 10 shows the file system idle period
probability density distribution. =~ We can ob-
serve that there are probability density spikes at
idle lengths of 1-minute, 1.5-minutes, 2-minutes,
and 5-minutes(60, 90, 120, and 300 seconds, re-
spectively). These on-the-minute spikes, which
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also show up in the user input idleness probabil-
ity density distribution, are caused by the auto-
matic features of many applications. Examples of
these automatic actions, which happen periodically,
are SCREEN-SAVER’s automatic-startup, WIN-
WORD’s automatic-saving and a dynamic HTML
down-loaded by the NETSCAPE browser. These
periodic events are a major reason that PC file sys-
tems usually do not idle for long periods. See Ap-
pendix III for file system idle period data for differ-
ent applications.

File System Idle Probability Density Distribution
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Figure 10: File System Idle Period Probability Den-
sity(“idle length” is measured in seconds.)
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Figure 9: File System Call Transit Matrix

6.3 Read/Write Bandwidth

Here we consider the file  system
READs/WRITEs and the number of bytes trans-
ferred for such a file system call. Table 10 gives the
number of bytes per hour transferred by (logical)
reads and writes. We see that bytes transferred due
to virtual memory paging and swapping accounts
for a small part (14.7%) of total bytes transferred.
This percentage is smaller than 34.9% reported in
[3], and 15%-21% reported in [14]. The difference
can be explained by two factors: most of the ma-
chines we traced have fairly large main memories in
comparison to the systems considered in previous
studies [3] and [14]; and a Windows95 user nor-
mally runs only one application program at a time.

rFunction | Bytes per hour | Percent J
FS Read 37347 K 73.61%
FS Write 5948 K 11.72%
Paging Read 2479 K 4.89%
Paging Write 2874 K 5.66%
Swapping Read | 1730 K 3.41%
Swapping Write | 361 K 0.71%

Table 10: File System 10 Traffic (“FS Read” is regular
file system READ, and “FS Write" is regular file system
WRITE.)
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The file system idle period distribution, dis-
cussed in the previous subsection, suggests that the
file system IO traffic should be very bursty. Ta-
ble 11 gives the maximum total IO data transfer to
appear in any period of one hour, one minute or
10 seconds, in any of our 36 traces. Also shown in
each case is the rate per second. These figures can
be compared with Table 10 to see how bursty the
file system IO traffic is.

Max TP | READ | WRITE | Total I0_|
Per Hour | 1424672K | 353006K | 1480949K
(bytes/s) | (395.7K) | (98.1K) | (411.4K)
Per Min | 141528K | 94627K | 145466K
(bytes/s) | (2358.8K) | (1577.1K) | (2424.4K)
Per 10Scc | 92035K | 36803K | 92935K
(bytes/s) | (9293.5K) | (3680.3K) | (9293.5K)

Table 11: File System Maximum [O Traffic Throughput
(“Max TP” is the maximum throughput.)

The following two figures, Figure 11 and Fig-
ure 12, show the distributions of the number of of
file system IO bytes transferred in a period of one
hour or one minute. The X axis is the number of
bytes transferred, and the limit of each bucket on
X axis is [27,27+! — 1] where n is bucket number.
The Y axis is the percentage of tracing time for the




different file system IO traffic rates shown on the
X axis. For example, the file system total (READ
+ WRITE) IO bytes transferred per hour were be-
tween 8388608 (22%) and 16777215 (22* — 1) bytes
for 17.3% of the total tracing time.
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Figure 12: Distribution of File System 10 Burstyness (per
minute)

The following two figures, Figure 13 and Fig-
ure 14, show the distributions of the total number
of bytes transferred and number of read/write op-
erations as a function of the block size. The limit of
each bucket is [27,2"+1 — 1] where n is bucket num-
ber. The block size is the number of bytes irans-
ferred per file system call of the regular file system
READs and WRITEs. For example, as shown in
Figure 13, 16K bytes were transferred per hour as
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part of the blocks with size of 4096 to 8191 bytes,
with 3900 file READs falling into this range of block
sizes.

Distribution of File System READ Operation of Different Block Size
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Figure 13: File System READs for Different Block Sizes
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Figure 14: File System WRITEs for Different Block Sizes

As can be seen from these figures, most block
sizes are intermediate, 4KB is the most popular
size. Since the Windows95 virtual memory page
size and the FAT-32 cluster size are both 4K bytes,
software designers also tend to use 4KB as read or
write buffer size. This distribution is different from
the one in previous study [10] which shows the most
frequently used READ block size was 512 bytes, and
more than 48% WRITE block sizes are smaller than
1024 bytes. This change is not just Windows95 spe-
cific. It is also a natural result of the growth in main
memory size, and the increase in the ratio of CPU
to 1/O speed. Additional discussion and data, spe-



cific to the 10 most frequently used applications,
appears in Appendix III.

6.4 File Access Patterns

In this subsection, we discuss file access patterns
by analyzing file system OPEN operations — 137687
in total in our traces, with 104223 unique files. We
also study the distribution of file sizes. and compute

the ratio of random IOs to sequential IOs.

[ Num Acc | Num Files [ Num Acc | Num Files |

1/8 62920 32 254
1/4 13544 64 129
/2 11067 138 101
1 7956 2566 58
2 5145 512 26
4 1918 1024 11
8 731 2048 2

16 358 4096+ 1

Table 12: File Access Distribution (“Num Acc” is the
number of open access to one file per 10 hours. “Num
Files" is the number of different such files. Note that
there are some files which were accessed fewer than once
per 10 hours in average.)

Table 12 lists the file access frequency distribu-
tion. In the table, we show how frequently a file is
accessed by “OPEN” file system calls in a 10-hour
period. “Num of accesses” in the table represents
the number of accesses to one file in 10 hours. “Num
of files” represents the number of different such files
that have been accessed the given number of times
in a bucket. The limit of each bucket (for integer
buckets only) is [2", 271 —1] where n is bucket num-
ber. For example, there are about 358 files among
104223 unique files that have been accessed in an
average of 16 to 31 times in every 10 hours. It is
interesting to note that on average, 95487 files, or
91.6% of the total PC files, have been accessed only
once or fewer during 10 hours. Only 0.6% or 582
files were opened more than 32 times during the
same time period. This distribution is derived from
the average distribution over 36 trace sets.

Table 13 shows the most frequently accessed
files. Most of these files are initialization pa-
rameter files. Although such files as AVCON-
SOL.INI, FRONTPG.INI, MAIN.IND, 10000.DAT,
and 50000.DAT have a very high access frequency,
they are user or application specific files, and show
up only to a limited number of user trace sets. Con-
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[ File Name | AccessTimes | FileSize
AVCONSOL.INI 45634 8576
10000.DAT 1262 64000
FINDFAST.EXE 1217 130859
WIN.INI 1123 37568
FRONTPG.INI 1102 465
50000.DAT 913 0
MAIN.IND 616 65280
MAIN.IDX 614 3107731
CUSTOM.INI 594 46
ISETUP.INI 593 17571
SYSTEM.INI 509 22480
DESKTOP.INI 479 65024
FONTS.MFM 387 144055
CONTROL.INI 352 6479
PCN.CFG 350 1277
COMMAND.COM | 294 116802

Table 13:

16 Most Frequently Accessed Files (“Ac-

cessTimes" is the number of accesses per 10 hours. The
list excludes Windows shortcut {ink files which are included
in Table 12.)

versely, some Windows component files, such as
SYSTEM.INI, WIN.INI, CONTROL.INI, DESK-
TOP.INI, FINDFAST.EXE and COMMAND.COM
show up in most of our user trace datasets.

Since our file system traces do not provide ac-
tual file sizes, we use the largest offset of any byte
transferred in any I/O to that file as an estimate
of the “File Size”. For example, an application
OPENSs a file, then SEEKs to the offset address of
10000’th byte from the beginning of that file, then
READs 500 bytes, then CLOSEs it. We say for
this round operations, the maximum offset of this
file accessed is 100004+500=10500. If this file were
opened 5 times, and the largest offset among all
maximum offsets was 10500, we use 10500 as the
estimate of the size of this file. Table 14 lists a few
examples indicating the accuracy of this estimation
method. In Table 14, the actual file sizes were gath-
ered from Machine Number 21 of Table 1, and the
estimated file sizes were derived from the traces col-
lected from this machine using the above method.
We list samples of four different files types in the ta-
ble, 1) read-only executable files, 2) read-only data
files, 3) read-write data files, and 4) temporary files.

Figure 15 compares the actual file sizes and the
estimated file sizes for 388 files shown in the trace
of Machine Number 21. Both X axis and Y axes



[ file type [ file name [ esize [ asize |
executable | WINZIP32.EXE 675328 | 736768
COMDLG32.DLL | 66560 | 92672
readonly RMNET.HLP 302343 | 302343
COLOR.GMA 0 1050
readwrite | COOKIES.TXT 2056 2080
SYSTEM.INI 2056 2056
temporary | _INZ0433._MP 501312 | 501312
cLASS61.MDM 0 688

Table 14: Estimating the File Sizes (“e.size” is the esti-
mated file size. “a_size” is the actual file size.)

are logarithmic. The figure shows that the majority
of file sizes from our estimation are accurate or very
close and the actual file size is normally larger than
the estimated file size. Table 15 illustrates the er-
ror distribution of the estimated file sizes. Note that
the data presented in this table and figure is very
pessimistic. The traces were collected 18 months
before the file sizes were specifically collected, and
thus many of the errors are due to the file size hav-
ing changing, not to its having been estimated in-
correctly.

[ErrRange | Percent | ErrRange | Percent |
Coorl) | 15% ] (0.0601] [13.7%
1,01)  [31% | (01,05 |121%
0.1,-0.05) | 1.0% | (05,1] | 255%
£0.05,0.05] | 43.0%

Table 15:  Error Distribution of Estimated File

Size. (“ErrRange” is calculated with: (actualfile_size-
estimated_file_size)/(actual file_size); “percent” is the per-
centage of files whose estimated file sizes fall into the cor-
responding error range.)

Figure 16 illustrates the file size distribution us-
ing the above file size estimation method, consider-
ing only non-zero file sizes. We exclude zero size files
because our estimation method generates many zero
byte file sizes 1, but zero byte files are very rare in
reality. Therefore we have excluded zero size files to

1There are three SEEK methods: seek from begin-
ning/current.position/end of a file. We cannot compute the
logical address in a file with the third SEEK method. Some
files were only accessed by the following file system operation
sequence: OPEN, SEEK(B), SEEK(E), CLOSE, while some
other files were only opened and closed without any READ,
WRITE, or SEEK operation against them. We do not know
the size of these files. We used 0 for the size of such files.
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improve the accuracy of our analysis. The X axis in
the figure represents the estimated file size in byes.
The limit of each bucket on X axis is [27, 271! — 1]
where n is bucket number. The Y axis represents
the number of different files that have the estimated
file size given on the X axis. For example, there are
about 6435 different files with estimated file sizes
between 2048 bytes and 4095 bytes.
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Figure 16: File Size Distribution

Table 16 lists 10 of the largest files accessed
when each of the 10 most frequently used appli-
cations were started. Examples of such large files
are those DLL files associated with one or multiple
applications. Loading an application could be sped
up if the system could take advantage of the knowl-
edge of which files need to be accessed before the
start of the application.




| Application

Tiles Accessed when an Application Started |

EXPLORER.EXE

ANAMES.NSF CCALVIN.NSF CONAGENT.EXE OUTBOX.MBX
P.ZIP P2.ZIP P3.ZIP P4.ZIP SENTITEMS.MBX
VCBKS40.MVB

WINWORD.EXE

ATOK11.DIC CCALVIN.NSF LMSCRIPT.EXE MLANDATA
MSGRJP32.LEX MS097.DLL MSPP32.DLL TTFCACHE
WINSPOOL.DRV WWINTL32.DLL

NETSCAPE.EXE

CONAGENT.EXE EXCEL.EXE INBOX INBOX.SNM
NETSCAPE.EXE SENT SENT.SNM SPOOLSS.DLL
SYSTEM.DAT TRASH

SHDOCVW.DLL

EPG.PCH EXCEL.EXE CONAGENT.EXE OUTBOX.MBX
REGSVR32.EXE SYSTEM.DAT TAPIADDR.DLL
TLNOLOC.DLL WINWORD.EXE WFMO0002.ACV

EUDORA.EXE

ATI.MOD CVS.MBX DESCMAP.PCE EUDORA.EXE

IN.MBX POINTLIB.DLL SPOOLSS.DLL SYSTEM.DAT
TRASH.MBX WINWORD.EXE

XVISION.EXE

COMDLG32.DLL EXCEL.EXE HOSTS HTML32.CNV
MSO097.DLL POINTLIB.DLL SYSTEM.DAT
TTFCACHE XV7004.ZIP XVISION.EXE

MSDEV.EXE

BPCAV.PCH BUS_60.AVI CONAGENT.EXE EPG.PCH
EXCEL.EXE REGSVR32.EXE SYSTEM.DAT
TLNOLOC.DLL VCBKS40.MVB WINWORD.EXE

EXCEL.EXE

ANAMES.NSF COMMAND.WAV CONAGENT.EXE
EJLMONZ21.DLL EXCEL.EXE FUNCRES.XLA
MS097.DLL SORT.WAV SYSTEM.DAT WFMO0002.ACV

OUTLLIB.DLL

EXCEL.EXE HTML32.CNV MS097.DLL OFFLADY.ACT
OUTLLIB.DLL MAILBOX.PST MS0O97.DLL
SPOOLSS.DLL SYSTEM.DAT WINWORD.EXE

POWERPNT.EXE

HOSTS LMSCRIPT.EXE MS097.DLL OFFICE.CAG
POWERPNT.CAG POWERPNT.EXE SYSTEM.DAT
USER.DAT WINSPOOL.DRV "$NORMAL.DOT

Table 16: 10 Largest Files Opened when an Application Starts

Table 17 compares the ratios of sequential file
system IOs and random file system IOs, in terms
of both total bytes transferred and total number of
function calls. Please note that we regard the first
READ or WRITE call after a file OPEN call as a
random I0. As seen in the table, the majority file
system IOs are random I0s. The ratio of sequential
IO to random IO for the WRITE file system call is
higher than for the READ call, i.e. there are more
sequential WRITEs than sequential READs for the
same number of WRITE calls and READ calls.

7 Miscellaneous Analysis

7.1 Trend Significance Test

In this subsection, we analyze the discrete-time
time series of trace events to see if there exists any
increasing or decline trend of activities for these
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[ 10 Types [ Random IOs | Sequential IOs
Bytes Read 87.97% 12.03%
Read Call 93.14% 6.86%
Bytes Written | 77.68% 22.32%
Write Calls 75.44% 24.56%

Table 17: File System Random 10s vs. Sequential i{0s

time series. We consider each of our 944 contin-
uous tracing period as one time series per file. User
input trace events and file system trace events are
analyzed separately as two different time series.

In our trend test, we use a statistic described
by Lewis and Shedler [28] to test a time series
for being a stationary uncorrelated Poisson process
against the alternative of being a Poisson process
with monotonic trend. In a discrete-time series



trend test, this statistics is as follows (see also [1]):

__Tr
12% N ()

(where 4 is the number of this time series; F'(4) is
its start time, L(¢) is its ending time, and j is the
current time in this time series; T = L(3) — F (i) +1
is the total duration in seconds of this time se-
ries; N (i) is total number of seconds during each
of which certain tracing events were logged — either
user input events or file system call events depend-
ing on the type of time series analyzed; I(4,j) is
the indicator function, for Second j in Time-series
i, whether certain tracing events were logged — its
value is 1 if certain tracing events logged, 0 if not;
§=Tilee M)

Our trend test shows that 99, or 10.5% of the
total 944 valid file system call time series, displayed
significant increasing trend, 94, or 10.0% of the to-
tal file system call time series displayed significant
declining trend, 128, or 13.6% of the total 944 valid
user input time series displayed significant increas-
ing trend, and 136, or 14.4% of the total user input
time series displayed significant declining trend.

Tr(i) = (S-T/2)/ (

7.2 Serial Correlation Test

We would like to be able to predict or estimate
the next idle period, based on the sequence of idle
periods thus far. To test the predictability of these
two time series, we apply the first order serial cor-
relation estimator S; on the top of next page (used
by [1]) to the user input idle period series and file
system idle period series separately.

The user input input idle time series and the file
system call idle time series analyzed in the serial
correlation test are the same as those used in the
trend significance test. The serial correlation test
results for both user input idle series and file sys-
tem idle series shows no significant or usable corre-
lations. Most correlation coefficient values observed
were small. Among 944 user input idle series and
944 file system idle series, 908 (96.2%) user input
idle series have a correlation coefficient value less
than 0.25, 839 (88.9%) user input idle series have
such a value less than 0.1, 869 (93.9%) file system
idle series have such a value less than 0.25, and 862
(85.0%) file system idle series have such a value less
than 0.1. Therefore, we conclude that both the pre-
dictive power of user input idle series and that of
file system idle series are low.
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7.3 Tracing Overhead

In this subsection we discuss the tracing over-
head and its potential impact on our results. Be-
cause we do not trace processor activities and the
user inputs are very sparse, file system tracing dom-
inates our trace. Two types of tracing overheads
exist: first, monitoring and generating the trace
record; second, dumping the buffered trace records
to the hard drives. We do not include processor
overhead analysis since processor activities are be-
yond the scope of our analysis. Our overhead mea-
surement focuses on trace record dumping, i.e. file
system call counts contributed by the tracer versus
the counts of non-tracing regular file system calls.

| Statistical Item | Statistics |
Tracer FS Operation Counts 127493
Regular FS Operation Counts | 4709118
Tracer FS Overhead 2.67%
Std. Deviation of Overhead 0.326%
90% Confidence Interval (2.59%, 2.75%)

Table 18: Tracer Operation Overhead

Table 18 shows the tracer overhead and the 90
percent confidence interval (over the 36 samples).
We conclude that the trace dumping overhead is
relatively insignificant compared to the regular file
system activities. Our file system analysis result
should not be affected by the trace dumping.

7.4 Limitations of the study

We note the following caveats and limitations in
our tracing and analysis:

e A change of window, as discussed in our anal-
ysis, does not exactly match an application
switch. This causes inaccuracy in our anal-
ysis in two ways: 1) An application running
in the background may not have an associ-
ated window, and our analysis is unable to
attribute events to that application. 2) A win-
dow switch may occur a few seconds before or
after the application switch, so the window
switch time used in our analysis is not com-
pletely accurate.

¢ Due to the absence of directory informationin
the file system traces, we use the largest offset
of any byte transferred in any I/O to that file
as the file size estimate. In many cases, this
underestimates the file size.
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(where z; is the idle length, and n is the number of idle periods in one trace file.)

o Lack of caching information in our file system
analysis. Our disk IO bandwidth analysis is
only at the logical level. The ratio of virtual
memory physical disk accesses to regular file
system physical disk accesses can be different
from the logical level ratio because the paging
IO cache hit rate is usually much lower than
the regular file system IO cache hit rate.

8 Summary and Future work

In this paper, we have presented a Window95
system tracer and we have discussed some major is-
sues in system tracing. A set of PC user and file sys-
tem traces have been collected from a variety of PC
users. The traces collected can be used in a num-
ber of ways to provide insights to various aspects of
personal computer systems and user behaviors.

As an extension to our Windows system
tracing, the processor activity profiling and
system resource management could be inte-
grated with our Windows95 tracer. The fea-
tures of the Pentium processor’s performance
counter make the above proposal feasible. Win-
dows95’s performance metrics stored under the
key HKEY_DYN_DATA /PerfStats/StatData and
the Windows standard Registry APIs is another
alternative solution. Given information about the
processor activity and other system resource usage,
we could establish a more complete PC user and
system model. We would be able to analysis the
processor activities, and how processors react to the
user activities in a Windows environment.

In this paper, we have also presented an analysis
of personal computer workloads. Our analysis cov-
ers user input behavior and file system activity. Our
analysis is based on a large set of PC user and file
system traces which were collected from a variety
of PC users. The statistics derived from this pa-
per can be used in benchmark development as well
as for deriving synthetic workloads for trace driven
simulation in different system resource management
algorithm studies.
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We have provided general descriptive statistics
for PC users and file systems. The available data
will permit us to do additional analysis of user
behavior and file system activities, establish more
complete user and file system statistical models, de-
velop system benchmark, apply trace driven simula-
tion to the evaluation of various PC system resource
management algorithm studies, file caching studies
and power management analysis.
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Appendix I: Overview of Win-
dows95

In this appendix, we summarize some major charac-
teristics of the Windows95 operating system.

Windows95 is a 32-bit protected-mode operating
system designed to run 16-bit and 32-bit application
programs on Intel architecture based personal comput-
ers. Windows95 uses the VFAT format file system, a
version of MS-DOS FAT file system with long filename
support. Windows95 provides up to a 4 gigabyte vir-
tual memory. The actual virtual memory size depends
on the physical memory and swap space available. Win-



dows95 supports preemptive multitasking of Windows-
based and MS-DOS-based applications. Windows95
runs only on PCs based on Intel architecture processors,
80386’s or more advanced models. Windows95 does not
attempt to provide a secure environment in which pro-
gram and data can be insulated from another program’s
inattentive or intentional misbehavior. [4] [5] [6] [7]

A1l.1 Windows95 virtual machine

The general concept of virtual machines dates back
to early IBM mainframe computers and the work by
Robert Goldberg. [29] The virtual machines in the PC
world were created when the early versions of Windows
needed to support multiple MS-DOS applications and
Windows applications running at the same time. [5] [6]
A virtual machine created by software reacts to applica-
tion programs the same way a real machine does, which
enables the MS-DOS programs to own the keyboard, the
mouse, the display screen, the processor, and the user’s
attention as if they were running on their own dedicated
hardware. Specifically, in the kernel of the Windows95
operating system, a Virtual Machine Manager (VMM)
manages all virtual machines. The VMM works with
Virtual Device Drivers (VxDs) to simulate hardware de-
vices and to provide system services to applications and
to each other. There is at least one virtual machine
running on a Windows95 system, the system virtual
machine, which runs all Windows applications and the
Windows95 system itself. One or more MS-DOS virtual
machines runming MS-DOS applications can co-exist on
a Windows95 system.

A1.2 Windows95 memory model

Generally speaking, Windows95 supports three dif-
ferent memory models: the Windows3.1 protected-mode
segmented memory model, the WindowsNT flat mem-
ory model, and the Virtual-86 model. In the protected-
mode segmented memory model, the processor uses a
selector (which points to a segment descriptor entry in
the memory descriptor table) and an offset pair to refer-
ence a memory location. The virtual memory is divided
into segments of up to 64KB each. In the flat mem-
ory model, there is only one segment which contains all
the programs. Virtual memory with a two-level page
table paging scheme is used where each 32-bit address
is split into three fields: page table directory pointer,
page table pointer, and page offset. Each page frame
is 4K bytes. In the virtual-86 mode, 20-bit addresses
yield only 1MB of address space. A segment/offset pair
is used to generate the 20-bit memory address.

A1.3 Windows95 and

threads

Each Windows application occupies a process that
consists of a dedicated address space and one or more

processes
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threads of execution. Each thread corresponds to a se-
quence of program steps and the evolving state of pro-
cessor registers and system objects associated with that
sequence. Windows95 uses a priority-based scheme to
preemptively multi-task threads.

Windows95 supports three types of applications:
Windows 32-bit application programs, Windows 16-bit
application programs, and MS-DOS application pro-
grams. Both 32-bit and 16-bit Windows application
programs run on the system virtual machine while each
MS-DOS application programs run on a separate MS-
DOS virtual machine. The system virtual machine has
one process for each program, and each 32-bit Windows
program can consist of more than one thread. The addi-
tional virtual machines are for MS-DOS programs, and
each contains exactly one process and one thread.

The 32-bit Windows programs adopt the flat mem-
ory model, wherein all code and data can be addressed
in a single segment covering all of the virtual memory.
The 16-bit Windows programs use the Windows3.1 seg-
mented memory model, in which available virtual mem-
ory is subdivided into segments of up to 64 KB each.
The 16-bit Windows programs load segment selectors
into the processor’s segment registers to access more
than 64 KB of memory. The 32-bit programs participate
in preemptive multitasking under the overall control of
the scheduling subsystem of the virtual machine man-
ager, while the 16-bit Windows applications must co-
operatively multi-task amongst themselves ~ from this
point of view, sometime Windows95 is not viewed as
a preemptive multitasking system. MS-DOS program
multitasking depends on the scheduling among differ-
ent virtual machines.

Most of the time, one or a few windows are asso-
ciated with one Windows program. Similarly to the
UNIX foreground process, a user-input-focused window
in Windows is the foreground window to which the user
input will be posted.

Al.4 Window95 file system

Windows95 uses an installable file system manager
(IFS manager), the highest layer in the file system, to
handle all file system calls from Windows 32-bit appli-
cations, Windows 16-bit applications and MS-DOS ap-
plications. We will discuss IFS in the next subsection
in more detail. The IFS manager calls on file system
drivers (FSDs) to support different file system formats.
The file system formats currently supported by Win-
dows95 include FAT-16 (File Allocation Table with 16
bit entries), FAT-32 (32 bit FAT entry version of FAT,
used in the OSR2 (OEM Service Release 2) version of
Windows95 and Windows98 and the CD-ROM file sys-
tem. The FSDs in turn talk to disk drivers which inter-
face with the hardware directly.

A FAT (including FAT-16 and FAT-32) format disk
consist of a BOOT sector, a file allocation table, a root
directory, and a cluster section. BOOT stores the ba-



sic information about the disk and for the use of system
boot. The root directory stores the information describ-
ing each file entry in the top level directory. The disk
cluster section is divided into separated clusters. The
notion of a cluster, which is a contiguous collection of
disk sectors, was introduced as the allocation unit. Each
FAT table entry is used to maintain the status of a disk
cluster, and the number of FAT table entries is equal
to the number of the clusters on a disk. A FAT table
is organized as a linear array containing multiple one-
way linked lists. One list corresponds to a file or sub-
directory. The FAT entry location of the head of each
list is stored in the root directory or a sub-directory. In
a FAT file system, sub-directories are stored as regular
files.

FAT-16 uses a fixed FAT table size (32KB), 16 bit
FAT table entries, and variable cluster sizes. FAT-16
supports up to 2GB per logical hard drive. A hard
drive larger than 2GB needs to be partitioned into a
few logical hard drives for a FAT-16 format file system.
For example, FAT-16 uses 32KB cluster for a 2GB hard
drive, 16KB cluster for a 1GB hard drive, ... , 4KB clus-
ter for a 128MB hard drive, etc. Different from FAT-16,
FAT-32 uses a variable FAT table size, 32 bit FAT table
entries, and a fixed cluster size (4KB). It supports up
to a 2TB hard drive. Our target systems all use the
FAT-16 format file system for their hard drives.

The FAT file system used in Windows95 file system
is called VFAT, virtual FAT — an improved version of the
old MS-DOS FAT format file system plus long filename
support. Similar to FAT, VFAT also can be classified
as VFAT-16 and VFAT-32. The VFAT file system has
two file names for each file, a DOS-8.3 format filename
(maximum 8 bytes for the file name and maximum 3
bytes for the file name extension) and Windows95 spe-
cific long filenames which can be as long as 256 bytes.

A1.5 Windows95 Installable File Sys-
tem and IFS Calls

The file systems of both Windows3.1 and MS-DOS
depend on MS-DOS’s INT21 code to manage files on
disk. Since MS-DOS INT21 is not reentrant, multi-
ple processes cannot simultaneously perform file sys-
tem calls without proceeding one at a time through
this critical section. Windows95 relies on the Installable
File System Manager to solve this problem and support
asynchronous 1/Os. All file system calls of Windows 32-
bit applications, Windows 16-bit applications and MS-
DOS applications go to the IFS manager. These file
system calls include the accesses to the memory swap
file as well. IFS manager calls on FSDs to implement
diverse file systems like FAT and the CD-ROM file sys-
tem. The FSDs talk to disk drivers which interface with
the hardware components such as hard drive and flop-
pies directly.

The IFS manager exports a mumber of virtual
device driver level services for use by other parts
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of the system. These IFS services and Windows95
virtual device driver’s dynamic loading, which was
designed for plug-and-play, allows third party soft-
ware and hardware vendors to write their own de-
vice drivers as part of Windows95 file system. One
of the most important services provided by IFS man-
ager is the IFS_ Mgr_InstallFileSystem ApiHook service.
IFS_Mgr_InstallFileSystem ApiHook takes the address of
the user VxD hook procedure as an argument, and
it returns the address of another hook procedure. A
VxD hook procedure is a VxD procedure which will be
triggered when the hook-targeting system service is in-
voked. All the VxD hook procedures should chain the
call instead of just processing it to give other poten-
tial hooks their chance to examine each request to the
targeted system services. Internally, the IFS manager
maintains its own list of API hooks so that the users
can add and remove the hooks in any order.

There are 31 most commonly used Windows95 in-
stallable file system calls generated by IFS manager.
These calls are our file system tracing targets. Next we
give the names of and an explanation for these instal-
lable file system calls.

e FS_ReadFiletransfers data from the file to a mem-
ory buffer. The memory buffer can be filled
asynchronously using one or more I/O requests.
In a regular FSD implementation, Windows95
VCACHE facilities should be used to maintain
a cache of disk records to minimize the physical
1/0.

o FS_WriteFile transfers data from a memory buffer
to the file. A cache of disk-sector-sized buffers
containing the data should be maintained and
the physical write operations should be performed
asynchronously.

o FS_FileSeck is an advisory service that allows an
FSD to optimize its prefetches of a file. This func-
tion is advisory because the read and write func-
tions both supply a file position that overrides
anything recorded by the FSD.

e FS_OpenFile takes indicated actions to open a file
which matches the parsed pathname.

e FS_CloseFile flushes any output buffers to disk,
deletes internal structures related to the file, and
generally cleans up after a series of operations on
an open file.

o FS_CommitFile flushes buffered data of a file han-
dle to disk.

e FS_EnumerateHandle enumerates file handle in-
formation.

e FS_Handlelnfo gets and sets information of a file
by the file handle.

e FS_LockFilelocks or unlocks a byte range in a file
by the file handle.

o FS_FileDateTime sets or retrieves the time-
stamps which are associated with an open file.




There are three Windows95 file time-stamps: cre-
ation time, last-modified time, and last-accessed
time.

FS_DeleteFile deletes the files whose parsed path-
name appears in the request pathname.

FS_Dir performs a function on a directory. Direc-
tory functions include creating, deleting, checking
for the existence of a directory, or converting a di-
rectory name between its long-name form and its
8.3 form.

FS_DirectDiskIOis called by [FS manager to han-
dle MS-DOS INT 25h and INT 26h (absolute disk
read and write) requests.

FS_Direct VolumeAccess performs direct volume
(file system storage resource logical unit) accesses.
FS_ConnectNetResource connects or mounts a
network resource.

FS_DisconnectResourceis the function to take the
actions required when one of the FSD volumes is
unloaded or deleted.

FS_FileAttributes gets or sets the attributes of a
file.

FS_FindChangeNotifyClose and
FS_FindNexztChangeNotify search for file change
notifies on a certain disk drive.
FS_FindFirstFile, FS_FindNeztFile
and FS_FindClose go together to implement a
normal file search. FS_FindFirstFile initiates a
file search that can include wildcards, and cre-
ates a context handle. FS_FindNeatFile contin-
ues the search with the context handle until no
more matches are possible. FS_FindClose closes
the context handle.

FS_Flush Volume flushes any pending output data
to the device.

FS_GetDiskInfo retrieves information about the
free space on a disk drive.

FS_GetDiskParms returns the real-mode address
of MS-DOS disk parameter block.

FS_Joctl1 6Drive performs an [/O control opera-
tion on the volume.
FS_QueryResourceInfoprovides basic information
about the file system to the IFS manager.
FS_RenameFile renames one or more files. Wild-
cards in the source name can be specified by the
user.

FS_SearchFile is the MS-DOS equivalent of the
FS_FindFirstFile family of functions.
FS_TransactNamedPipe performs named pipe op-
erations.

FS_UNCPipeRequest performs UNC path based
named pipe operations.
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A1.6 Windows95 frequently used 30
applications

SCREEN-SAVER Screen saver is a set of auto-
matic programs that start if the computer has
been idle for the number of minutes specified by
the user.

MSDOS-PROMPT MSDOS-Prompt is a system
application for providing MS-DOS application
running environment, a MSDOS virtual machine
in Windows95 system. Under Windows95, all
MS-DOS applications are started in a MSDOS-
Prompt Window and running in the MSDOS vir-
tual machine. All MS-DOS application programs
are categorized as the MSDOS-Prompt applica-
tion in our analysis.

EXPLORER.EXE Explorer is the Windows95
desktop user interface application that provides
both program management and file management.
It offers both a one-pane and a two-pane inter-
faces for the file management, and a taskbar in-
terface for the program management.
WINWORD.EXE WinWord is the Microsoft
word processing application. It is one of the major
applications in Microsoft Office groupware appli-
cations.

NETSCAPE.EXE Netscape is a well known In-
ternet browsing application from Netscape Corp.
Its formal name is Netscape Navigator.
SHDOCVW.DLL SHDOCVW.DLL is a compo-
nent of Windows95 system. It is known as the
system shell document object and control library.
It is in the format of DLL (dynamic linked li-
brary).

EUDORA.EXEEudora is the Microsoft Windows
POP/SMTP mailer application.

XVISION.EXE XVision is an X server Windows
application, which is also known as Hummingbird
Exceed from Hummingbird Corp.

MSDEV.EXE MSDev is known as the Microsoft
developer studio application. It is the com-
mon interface to most Microsoft Windows soft-
ware development tools: Microsoft Visual C4++,
Microsoft Fortran PowerStation, Microsoft Vi-
sual Test, Microsoft Developer Network, and Mi-
crosoft Visual J++.

EXCEL.EXE Excel is the Microsoft spreadsheet
application and is part of Microsoft Office group-
ware.

OUTLLIB.DLL OUTLLIB.DLL is the Microsoft
Office OUTLOOK dynamic linked library.
POWERPNT.EXE PowerPNT {powerpoint) is
the Microsoft presentation application, one of the
Microsoft Office groupware applications.
XVL.EXE XVL is a component of XVision (X
server for Windows) application from Humming-
bird Corp.




NOTEPAD.EXE Notepad is a small Microsoft
text file editor application. It is the default Win-
dows text editor program.

NLNOTES.EXE NLNotes is known as Lotus
Notes, a well known office application from Lo-
tus.

MSOFFICE.EXE MSOffice is the Microsoft Of-
fice shortcut bar application.

EUDORA32.DLI, EUDORA32.DLL is the dy-
namic linked library part of Microsoft Windows
POP/SMTP mailer application.
COMCTL32.DLL COMCTL32.DLL is a compo-
nent of Windows95 system. It is known as the
custom control library. It is in the format of DLL
(dynamic linked library).

WINHLP32.EXFE WinHLP32 is the Microsoft
help application which reads WINHELP format
files and provides online helping information.
WINHELP is the standard Windows software
help file format.

COMDLG382.DLL COMDLG32.DLL is a compo-
nent of Windows95 system. It is known as the
common dialog library which provides dialog fea-
tures to all the Windows application. It is in the
format of DLL (dynamic linked library).
TELNET.EXE Telnet is a Windows application
which provides PC users the telnet remote login
environment. There are many different versions of
this application from different software vendors.
MSACCESS.EXE MSAccess is the Microsoft per-
sonal database management application. It is also
known as ACCESS, which is a component of the
professional version of Microsoft Office software.
SHELL32.DLL SHELL32.DLL is a component of
Windows95 system. It is known as Windows shell
common dynamic linked library.

VBE.DLL VBE.DLL is a component of Microsoft
common shared libraries. It is known as the
VESA BIOS Extensions dynamic linked library.
WINPROJ.EXE WinProj is a Microsoft project
management software.

SPIRIT.EXE Spirit is a Windows application tool
specific only to a few of our tracing target PC
systems.

MAILNEWS.DLL MAILNEWS.DLL is a system
mail/news dynamic linked library installed on the
Windows95 systems with Microsoft Internet Ex-
plorer (IE3/IE4).

ACRORD32.EXE AcroRD32 is known as 32 bit
version of Acrobat Reader from Adobe Corp. It
is an application for reading PDF format docu-
ments.

MPRSERV.DLL MPRSERV.DLL is a component
of Windows95 system. It is known as the Multinet
Router program library. It is in the format of DLL
(dynamic linked library).
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o RASAPI32.DI.LRASAPI32.DLL is a component
of Windows95 system. It is known as Dial-Up
Network Dynamic Linked Library or Remote Ac-
cess 32-bit API Dynamic Linked Library.

Appendix II: WMonitor trace
record data files

Trace record data files record the following data:
USER.ID, StartTime, StopTime, and the trace records.
Start Time and StopTime contain the Windows95 inter-
nal millisecond counter when the WMonitor starts and
stops instrumenting the system activities. The Win-
dows95 internal millisecond counter is the elapsed (inte-
ger) time in milliseconds since the Windows95 system’s
most recent start. Each trace record includes four data
fields: time stamp, trace type, function name, and in-
formation detail. We further discuss the trace record
structure in next subsection. All numbers are hexadec-
imal numbers except the number in USER_ID record
in a trace record data file. One trace record spans ex-
actly one text line with the return and line-feed charac-
ters, 0D and 0A in ASCII code, as the line separator.
We can determine the calendar date and time for Start-
Time, StopTime and each trace record based on the
time-stamp and the readings of the StartTime record
and the StartDate record in the corresponding WMon-
itor system profile log file.

The following file is a WMonitor trace record data
file example:

USER_ID: 761

StartTime: 9E9CAF

Time Type Funct Details

130 3 OPEN C: [223] \DAT\WMONITOR.INI

0 3 WRITE C: [223] 93

0 3 CLOSE C: [223]

0 3 SEEK C: [2A8] 4B400:B

0 3 READ C: [2a8] 200

A 2 [e54] C:\WMONITOR\BIN\WMONITOR.EXE

0 3 READ C: [271] 1000 MM

0 3 FATTR C: \WINDOWS\SYSTEM\MFC40LOC.DLL
(o] 3 FDOPN  C: \WMONITOR\BIR\*.*

DB 0 K_DN 11

96 0 K_UP 91

0 3 FLCKS C: [26B]

0 3 RENAM  C: \DAT\DATA.ZIP \RECYCLED\DCO.ZIP
(] 3 DIR C: QLGD \WHMONITOR\BIN\MSGHK.DLL
] 3 DELET C: \RECYCLED\DESKTOP.INI

0 1 START_MV

9E 1 STOP_MV

Stop_Time: 1D41D3C

With detailed information and time stamps for ev-
ery trace event available, WMonitor trace record data
files can be used in comprehensive workload analysis
and tracing driven simulations. Except for the calendar
date and time information, WMonitor system activity
profiling information log files can be reproduced from
the trace record data files.




A2.1 WMonitor trace record structure

Each trace record in a WMonitor trace record data
file includes up to four data fields: time stamp, trace
type, function name, and detail information. The trace
record data fields are separated by the character of
ASCII code 09. Each trace record contains up to 539
bytes. When a trace record reaches its maximum length,
two full Windows95 long file pathnames, each of 256
bytes, are included.

The time stamp records the time when a traced
event triggers a WMonitor procedure. The incremen-
tal time stamp is used to reduce the record size. The
absolute time stamp can be derived by accumulating
the incremental time stamps and then adding the Start-
Time. The granularity of time stamp is one millisecond.
The upper limit of this time stamp is OxFFFFFFFF.

Trace type can have one of the following four values:

e 0 — keyboard input event
e 1 — mouse or other pointing device input event
e 2 — user-input-focused window switch event

o 3 — file system call event

Table 19 also lists all trace record types in a WMoni-
tor trace record data file. Different types of trace records
interpret the function name field and detail information
field differently, which we will discuss in the following
two sub-sections.

A2.2 User activity trace record

There are three types of user activity trace records:
keyboard input record, mouse input record and user-
input-focused window switch record.

o keyboard input record: For a keyboard input
event, the function name is either “K_DN” (press-
ing a key) or “K_UP” (releasing a key). The 1
byte (7 valid bits) key scan code is stored in the
detail information field. The 8th bit of this byte
indicates the status of the key being accessed: 1
— up and 0 — down.

For example, if the imput is a capital ASCII
“K?”, four keyboard trace events are recorded:
0x2A (scan code of “left_shift”) K_DN, 0x25 (scan
code of “k”) K.DN, 0xA5 (scan code of “k” +
0x80) K_UP, and 0xAA (scan code of “left_shift”
+ 0x80) K_UP, where “left_shift” K_DN and
“left_shift” K_UP are not generated if Caps_Lock
is in function.

¢ mouse input record: For a mouse input event,
the function name can be one of the follow-
ing mouse events: L_DWN (pressing the left
mouse button), L_.UP (releasing left mouse but-
ton), L_.CLK (double clicking the left mouse but-
ton), M_DWN (pressing middle mouse button),
M_UP (releasing middle mouse button), M_CLK
(double clicking middle mouse button), R_LDWN
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(pressing right mouse button), R_UP (releas-
ing right mouse button), R_CLK(double clicking
right mouse button), START MV (starting mov-
ing the mouse), and STOP_MV((stopping moving
the mouse). The detail information field is empty
for the mouse input event case.

o user-input-focused window switch record: For a
window switch event, the window handle and the
application software full pathname are stored in
the function name field and detail information
field, respectively.

A2.3 File system call trace record

Table 20 gives a list of file system function call
names, the corresponding detail information fields, and
installable file system call names. We discussed the in-
stallable file system calls previously.

File system call trace records include both regu-
lar file access call records and memory swap file access
call records. Memory swap file access call records are
mapped memory reads, mapped memory writes, mem-
ory paging reads, or memory paging writes. Memory
swap file access records distinguish themselves from reg-
ular file access records by the last two bytes in the detail
information field: either “MM” (Mapped Memory) or
“PG” (memory PaGing).

Appendix III: Miscellaneous

Data

Table 21, Table 22, Table 23, Table 24, and Ta-
ble 25 show the same statistics, which we have seen in
Table 5, of 30 of the most frequently run applications
among desktop users, laptop users, manager type users,
engineer type users and other users, respectively.

Table 26 shows the measured user input idle behav-
ior with logarithmic scaled idle lengths.

The 4 small plots in Figure 17 are used to show the
different user idle period behaviors among the most fre-
quently used applications. In each plot, we give both
the user input idle time distribution of 4 specific ap-
plications in dotted lines and the user input idle time
distribution of all programs with a solid line. PC users
behave differently when running different applications.
The plots show that PC users are more active, and tend
to not idle for a long time with an application whose
dotted line is above the solid line. Examples of such
software tools are WINWORD, NETSCAPE, EXCEL,
and NOTEPAD etc. The plots also show that PC users’
idle behavior is roughly average when using system soft-
ware such as EXPLORER, EUDORA, and MSOFFICE
etc. Obviously, PC users are inactive when SCREEN-
SAVER is running.

Table 27 shows the measured file system idle behav-
ior with logarithmic scaled idle lengths.




[ Trace type | Explanation Data field
USER.ID | userid user-identification
StartTime | start time trace-starting-time*
Stop_Time | stop time trace-stopping-time*
0 keyboard input | keyboard-event key-scancode
1 mouse input mouse-event
2 window switch | [window-handle] application-name
3 file system call | see Table 20

Table 19: WMonitor Trace Records (* is the Windows internal millisecond counter readings when tracing starts/stops.)

[ function name |

detail information field

IFS call name

READ diskdrive fhandle! bytes vm_opt® | FS_ReadFile

WRITE diskdrive fhandle bytes vm_opt FS_WriteFile

FDNXT diskdrive handle® FS_FindNextFile
FCNNT diskdrive FS_FindNexstChangeNotify
SEEK diskdrive fhandle bytes position®? | FS_FileSeck

CLOSE diskdrive fhandle FS_CloseFile

COMMT diskdrive fhandle FS_CommitFile

FLCKS diskdrive fhandle FS_LockFile

FTMES diskdrive fhandle FS_FileDateTime
PIPRQ diskdrive FS_TransactNamedPipe
HDINF diskdrive fhandle FS_Handlelnfo
ENMHD diskdrive FS_EnumerateHandle
FNDCL diskdrive handle® FS_FindClose

FCNCL diskdrive FS_FindChangeNotifyClose
CNNCT diskdrive F'S_ConnectNetResource
DELET diskdrive filename FS_DeleteFile

DIR diskdrive method® filename FS_Dir

FATTR diskdrive filename FS_FileAttributes
FLUSH diskdrive FS_FlushVolume
GDSKI diskdrive FS_GetDiskInfo

OPEN diskdrive fhandle filename FS_OpenFile

RENAM diskdrive filenamel filename2 FS_RenameFile

SEARC diskdrive filename FS_SearchFile

QUERY diskdrive FS_QueryResourcelnfo
DISCN diskdrive F'S_DisconnectResource
UNCPR diskdrive FS_UNCPipeRequest
10C16 diskdrive FS_Toctl16Drive
GDSPR diskdrive FS_GetDiskParms
FDOPN diskdrive filename FS_FindFirstFile
DSDIO diskdrive FS_Dzrect VolumeAccess

Table 20: File System Call Records (fhandle! is the file handle in the format of “[hex-number]". vm_opt® is the virtual
memory operation indicator which can be null (i.e. "), or one of "PG” or "MM". handle® of FDNXT and FNDCL is
the file searching context handle. position® can be one of “begin”, “end”, or “current”. method® can be one of “mkdir”,

“rmdir", “chechdir", “query8.3dir", or “querylongdir".)
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Figure 17: User Idle/Busy Time Distribution of Different Applications

30




[[A# [ Application [ Time(r) [ Invoked(r’) | KeyEvnt [ MsEvnt | FSCall | VMFSCall |
1 SCREEN-SAVER 20.19%(1) | 0.553 0.769 105.090 87967.398 119.467
2 MSDOS-PROMPT | 11.19%(2) 17.992(1) 2772.651 | 2146.047 | 44422.184 1531.045
3 EXPLORER.EXE 9.81%(3) 10.803(2) 458.039 1113.267 | 59752.309 2100.458
4 WINWORD.EXE 7.29%(4) 2.868(3) 3765.487 | 1847.313 | 108861.945 | 4249.324
5 | NETSCAPE.EXE | 6.87%(5) | 2.242(6) | 861.056 | 1266.012 | 94241.625 | 1726.872
6 SHDOCVW.DLL 5.37%(8) 2.738(5) 429.762 2635.267 | 101092.172 | 3459.110
7 EUDORA.EXE 0.36% 0.040 21.120 195.367 20102.994 250.122
8 | XVISION.EXE 6.62%(6) | 0.896(10) | 7694.425 | 226.582 | 57960.312 | 310.893
9 MSDEV.EXE 5.89%(7) 2.865(4) 3131.524 | 1251.985 | 69845.750 3572.496
10 EXCEL.EXE 1.99% 1.469(8) 2552.007 | 3019.337 | 45318.383 766.171
11 OUTLLIB.DLL 2.98%(9) 0.986(9) 2705.327 | 654.595 151393.312 | 552.313
12 POWERPNT.EXE | 0.18% 0.237 1722.181 | 2641.297 | 51856.781 3273.526
13 XVL.EXE 2.92%(10) | 0.439 4011.402 | 577.732 4615.911 90.187
14 NOTEPAD.EXE 0.95% 0.601 3927.248 | 1867.932 | 30435.764 467.469
15 NLNOTES.EXE 0.02% 0.022 6894.016 | 1418.306 | 83230.367 827.870
i6 MSOFFICE.EXE 0.77% 0.395 0.536 328.966 110597.719 | 1685.465
17 EUDORA32.DLL 0.03% 0.017 165.146 269.645 29028.352 323.761
18 COMCTL32.DLL 0.39% 1.776(7) 969.748 5905.655 | 197024.812 | 2868.450
19 WINHLP32.EXE 0.29% 0.781 443.907 3697.854 | 53124.121 1607.634
20 COMDLG32.DLL 0.31% 0.913 2564.405 | 5447.927 | 108565.922 | 3953.821
21 TELNET.EXE 0.66% 0.214 2694.514 | 214.075 9322.622 278.365
22 MSACCESS.EXE 0.42% 0.226 6142.745 | 2278.439 | 172882.188 | 564.209
23 SHELL32.DLL 0.24% 2.157 554.103 3478.052 | 214584.375 | 5394.480
24 VBE.DLL 0.36% 0.206 8428.405 | 787.312 36320.055 244.545
25 WINPROJ.EXE 0.00% 0.003 0.000 6243.163 | 442208.062 | 7972.039
26 SPIRIT.EXE 0.00% 0.000 n/a n/a n/a n/a
27 MAILNEWS.DLL 0.28% 0.179 8615.952 | 1727.342 | 8507.025 670.565
28 ACRORD32.EXE 0.25% 0.084 117.509 631.685 122621.852 | 995.427
29 MPRSERV.DLL 0.12% 0.102 938.017 515.811 34634.395 463.589
30 RASAPI32.DLL 0.05% 0.149 95.432 1493.428 | 80613.844 2069.950
31 OTHER-APPS 12.87% 16.926 1586.767 | 1622.998 | 97288.414 1809.894

Table 21: The Most Frequently Used Applications for Desktop Users (“A#" is the application number; “Application” is
the application name, “Time(r)" is the percentage of time each application was traced to the total tracing time, (" is
the rank of tracing time. “Invoked(r')" is the number of times each application was invoked per hour, “(r')" is the rank of
the invoking count, “KeyEvnt/MsEvnt/FSCall/VMFSCall” are the counts of different events per hour. “n/a" represents

“not available”.)

We use 4 small plots in Figure 18 to show the mea-
sured file system idle behaviors of the most frequently
used applications. In each plot, we give both the file sys-
tem idle time distribution for four specific applications
in dotted lines and the file system idle time distribution
for all programs with a solid line. It can be seen how
the file system idle pattern varies with different running
applications. PC file systems idle less time for such
applications as WINWORD, NETSCAPE, EUDORA,
EXCEL, and POWERPNT than for other applications.
The file system idle behaviors of most other applications
are about the average.

Figure 19 and Figure 20 repeat the same analysis
we did in Figure 13 with additional data for 10 of the
most frequently used applications. Applications such
as EUDORA.EXE, XVISION, and SCREEN-SAVER
have significantly fewer calls and transfer fewer bytes
than other applications. Applications with a large num-
ber of READs, such as NETSCAPE.EXE and MSDOS-
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PROMPT, have fewer large sized READs than other
applications such as MSDEV.EXE.

Similarly, Figure 21 and Figure 22 show the distri-
butions of bytes transferred and number of calls between
for WRITE block sizes for the 10 most frequently used
applications.




[ A# | Application [ Time(r) [ Invoked(r’) [ KeyEvnt | MsEvni | FSCall | VMFSCall |
1 SCREEN-SAVER 25.18%(1) [ 0.739 0.184 30.044 74983.461 59.302
2 | MSDOS-PROMPT | 12.88%(2) | 24.718(1) | 1698.112 | 2715.631 | 30858.846 | 678.259
3 EXPLORER.EXE 7.26%(4) 8.314(2) 175.156 1301.458 | 51159.625 1535.693
4 WINWORD.EXE 7.25%(5) 2.581(5) 3773.160 | 1802.811 | 61485.605 2097.828
5 NETSCAPE.EXE 3.38%(7) 1.455(9) 988.197 3001.398 | 109353.859 | 1865.646
6 SHDOCVW.DLL 1.43% 3.279(3) 1546.347 | 2975.285 | 159004.953 | 8189.200
7 | EUDORA EXE 11.30%(3) | 2.044(6) 769.065 | 663.863 | 26354.199 | 71.171
8 XVISION.EXE 0.00% 0.000 n/a n/a n/a n/a
9 MSDEV.EXE 0.00% 0.000 n/a n/a n/a n/a
10 EXCEL.EXE 3.27%(8) 3.017(4) 2179.602 | 3440.749 | 25738.100 2490.340
11 OUTLLIB.DLL 0.96% 1.178(10) 3793.645 | 2856.020 | 137692.156 | 892.109
12 POWERPNT.EXE | 4.35%(6) 1.139 1532.013 | 1716.874 | 53463.180 1833.185
13 XVL.EXE 0.00% 0.000 n/a n/a n/a n/a
14 NOTEPAD.EXE 1.07% 0.326 3904.690 | 1368.169 | 5998.755 87.528
15 NLNOTES.EXE 3.14%(9) 0.898 3579.865 | 1305.978 | 52813.758 1610.286
16 MSOFFICE.EXE 1.03% 0.532 7.770 456.484 40036.484 976.108
17 EUDORA32.DLL 1.92%(10) 1.642(8) 605.422 382.831 16860.672 48.170
18 COMCTL32.DLL 0.25% 0.453 175.362 3206.048 | 55103.969 1345.763
19 WINHLP32.EXE 0.37% 0.541 134.061 3000.632 | 24845.887 1289.911
20 COMDLG32.DLL 0.22% 0.908 3342.541 | 5900.784 | 194616.797 | 4692.518
21 TELNET.EXE 0.05% 0.056 2150.984 | 1574.466 | 1349.159 14.258
22 MSACCESS.EXE 0.00% 0.000 n/a n/a n/a n/a
23 SHELL32.DLL 0.30% 1.914(7) 592.402 3262.018 | 364096.406 | 5630.792
24 VBE.DLL 0.00% 0.003 0.000 3293.961 | 270903.344 | 24754.617
25 WINPROJ.EXE 0.49% 0.079 706.423 847.938 79969.289 178.754
26 SPIRIT.EXE 0.41% 0.028 0.000 98.654 37593.477 79.204
27 MAILNEWS.DLL | 0.00% 0.000 n/a n/a n/a n/a
28 ACRORD32.EXE 0.15% 0.025 98.938 4028.051 | 80883.180 2182.745
29 MPRSERV.DLL 0.18% 0.275 1621.910 | 922.378 27754.391 388.687
30 RASAPI32.DLL 0.21% 0.596 633.282 1358.666 | 86841.891 977.528
31 OTHER-APPS 12.36% 11.777 2420.533 | 1692.875 | 88241.203 1366.250

Table 22: The Most Frequently Used Applications for Laptop Users

Distribution of File System Read Vs. Different Block Size
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Distribution of File System Read Number Vs. Different Block Size
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[ A# | Application [ Time(r) [ Invoked(r’) | KeyEvnt | MsEvnt [ FSCall | VMFSCall |
1 SCREEN-SAVER 17.09%(1) | 0.789 2.270 15.898 43490.238 75.252
2 MSDOS-PROMPT | 7.65%(5) 6.797(3) 603.063 4441.306 | 30333.857 787.215
3 EXPLORER.EXE 8.36%(4) 7.309(1) 191.558 1180.832 | 54394.719 1638.405
4 WINWORD.EXE 10.22%(3) | 2.192(5) 2994.873 | 1123.016 | 85271.336 939.740
5 NETSCAPE.EXE 4.81%(6) 1.712(7) 319.880 2225.503 | 134431.297 | 1098.030
6 SHDOCVW.DLL 4.03%(8) 6.901(2) 1116.682 | 3088.711 | 129143.391 | 6147.991
7 EUDORA.EXE 14.77%(2) | 2.256(4) 639.260 615.575 26418.029 73.226
8 XVISION.EXE 0.00% 0.000 n/a n/a n/a n/a
9 MSDEV.EXE 0.00% 0.000 n/a n/a n/a n/a
10 EXCEL.EXE 1.05% 0.623 1755.755 | 2675.299 | 57397.484 2354.195
11 OUTLLIB.DLL 1.46% 0.570 276.403 835.789 125518.109 | 106.047
12 POWERPNT.EXE | 4.59%(7) 0.866(10) 1002.484 | 1566.688 | 43581.023 436.418
13 XVL.EXE 0.00% 0.000 n/a n/a n/a n/a
14 NOTEPAD.EXE 1.17% 0.665 1496.969 | 759.597 4144.574 246.772
15 NLNOTES.EXE 2.19%(10) | 0.308 2624.637 | 1093.262 | 46710.875 3211.693
16 MSOFFICE.EXE 2.30%(9) 0.816 6.454 321.730 91846.250 539.777
17 EUDORA32.DLL 1.92% 1.814(6) 244.221 386.780 19264.875 25.867
18 COMCTL32.DLL 0.27% 0.666 316.344 4026.753 | 84427.758 2196.889
19 WINHLP32.EXE 0.09% 0.188 321.772 3106.099 | 53475.039 864.920
20 COMDLG32.DLL 0.26% 1.088(9) 4661.635 | 5319.023 | 254170.938 | 5323.927
21 TELNET.EXE 0.00% 0.000 n/a n/a n/a n/a
22 MSACCESS.EXE 0.00% 0.000 n/a n/a n/a n/a
23 SHELL32.DLL 0.26% 1.226(8) 541.496 3674.675 | 455546.688 | 9042.322
24 VBE.DLL 0.00% 0.000 n/a n/a n/a n/a
25 WINPROJ.EXE 0.92% 0.147 705.617 854.433 80335.086 182.145
26 SPIRIT.EXE 0.00% 0.000 n/a n/a n/a n/a
27 MAILNEWS.DLL 0.70% 0.404 8739.584 | 1670.039 | 6257.145 575.281
28 ACRORD32.EXE 0.81% 0.129 34.720 1492.520 | 111912.125 | 762.068
29 MPRSERV.DLL 0.08% 0.211 1311.225 | 1648.725 | 44862.289 865.152
30 RASAPI32.DLL 0.14% 0.494 1344.398 | 2227.797 | 56293.805 2776.335
31 OTHER-APPS 13.79% 10.620 2673.142 | 1422.441 | 109011.352 | 1991.548

Table 23: The Most Frequently Used Applications for Manager Type Users

Distribution of File System Write Vs. Different Block Size

7.E+03

6.E+03 1+

w » o
z m m
8 8 8

kilobytes transfered per hour

1.E+03 1

2.E+03 +

——— ALL-PROGRAM
~-—SCREEN-SAVER

----MSDOS-PROMPT
—— EXPLORER.EXE
e WINWORD.EXE
| =+~ NETSCAPE.EXE
-~ SHDOCVW.DLL
---— EUDORA.EXE
e XVISION:EXE
T~ - MSDEV.EXE
——EXCEL.EXE

0.E+00

128 2048

32768 524288
block size (bytes)

Figure 21: Bytes Transfered of WRITE Operations vs.
Different Block Sizes of Different Applications

Distribution of File System Write Number Vs. Different Block Size
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[ A# | Application | Time(r) | Invoked(r’) | KeyEvnt | MsEvnt | FSCall | VMFSCall |
1 SCREEN-SAVER 25.96%(1) | 0.643 0.139 89.116 62497.566 91.956
7 | MSDOS-PROMPT | 8.87%(3) | 15.680(1) | 2190.405 | 2034.186 | 46164.996 | 1568.427
3 EXPLORER.EXE 9.24%(2) 10.305(2) 380.564 1080.156 | 54092.098 1507.099
4 WINWORD.EXE 5.06%(7) 2.228(5) 4780.083 | 2135.123 | 87498.164 2297.597
5 NETSCAPE.EXE 5.98%(5) 2.037(6) 933.823 1391.715 | 78027.180 2049.089
6 | SHDOOVW.DLL | 3.52%(38) | 1.691(8) | 476.971 | 2420.674 | 102444.695 | 1925.847
7 EUDORA.EXE 2.56% 0.584 932.815 700.222 25419.334 90.148
8 XVISION.EXE 6.05%(4) 0.818 7694.425 | 226.582 57960.312 319.893
9 MSDEV.EXE 5.38%(6) 2.616(4) 3131.524 | 1251.985 | 69845.750 3572.496
10 | EXCEL.EXE 2.01%(9) | 2.692(3) | 2694.053 | 3480.675 | 29598.010 | 1862.773
11 OUTLLIB.DLL 2.22% 0.708 3252.901 | 628.178 157123.641 | 646.350
12 POWERPNT.EXE | 1.02% 0.417 1479.633 | 1956.064 | 28789.926 2522.706
13 XVL.EXE 2.67%(10) | 0.401 4011.402 | 577.732 4615.910 90.187
14 NOTEPAD.EXE 1.05% 0.484 4640.805 | 1982.406 | 22913.561 299.226
15 NLNOTES.EXE 1.30% 0.499 4174.174 | 1431.508 | 56711.430 665.941
16 MSOFFICE.EXE 0.40% 0.294 0.890 491.598 55217.277 2135.177
17 EUDORA32.DLL 0.61% 0.455 981.155 373.635 14757.955 84.422
18 COMCTL32.DLL 0.40% 1.608(9) 848.314 5291.124 | 171492.312 | 2507.759
19 WINHLP32.EXE 0.45% 0.920(10) 277.457 3308.933 | 36323.160 1300.672
20 COMDLG32.DLL 0.30% 0.904 2532.241 | 5705.828 | 108048.227 | 3894.737
21 TELNET.EXE 0.31% 0.171 4666.352 | 470.625 11891.114 516.739
22 MSACCESS.EXE 0.38% 0.193 6215.635 | 2230.134 | 173006.000 | 473.225
23 SHELL32.DLL 0.29% 2.027(7) 625.306 2942.151 | 252742.172 | 4233.720
24 VBE.DLL 0.32% 0.165 8543.806 | 741.658 36372.191 165.521
25 WINPROJ.EXE 0.00% 0.000 n/a n/a n/a n/a
26 SPIRIT.EXE 0.27% 0.018 0.000 98.654 37593.477 79.204
27 MAILNEWS.DLL 0.01% 0.023 4751.519 | 3518.516 | 78833.273 3648.938
28 ACRORD32.EXE 0.04% 0.048 624.129 2784.463 | 97034.109 5295.204
29 MPRSERV.DLL 0.18% 0.177 1383.181 | 594.297 20218.197 217.350
30 RASAPI32.DLL 0.12% 0.283 244.227 947.914 98993.305 334.433
31 OTHER-APPS 11.85% 16.651 1455.495 | 1960.222 | 103894.641 | 1741.169

Table 24: The Most Frequently Used Applications for Engineer Type Users
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[ A# | Application [ Time(r) [ Invoked(r’) | KeyEvnt | MsEvnt | FSCall | VMFSCall |
1 SCREEN-SAVER 13.58%(2) | 0.320 0.028 7.743 329207.812 | 115.780
2 MSDOS-PROMPT 32.63%(1) 66.718(1) 3041.361 | 2099.848 | 31462.283 753.221
3 EXPLORER.EXE 7.11%(4) 11.219(2) 555.639 1760.458 | 77331.359 4785.117
4 WINWORD.EXE 12.73%(3) | 6.030(3) 2911.969 | 2174.929 | 97259.594 8393.284
5 NETSCAPE.EXE 3.79%(86) 1.670(8) 1772.296 | 3046.427 | 170730.250 | 1036.458
6 SHDOCVW.DLL 4.20%(5) 2.520(6) 334.792 3114.330 | 112037.203 | 10083.119
7 EUDORA.EXE 0.00% 0.000 n/a n/a n/a n/a
8 XVISION.EXE 0.00% 0.000 n/a n/a n/a n/a
9 MSDEV.EXE 0.00% 0.000 n/a n/a n/a n/a
10 EXCEL.EXE 3.11%(7) 1.840(7) 1198.493 | 2549.112 | 44701.109 623.354
11 OUTLLIB.DLL 2.86%(8) 3.509(5) 3834.659 | 2826.006 | 138223.938 | 924.655
12 POWERPNT.EXE | 1.80%(9) 1.108(9) 3913.581 | 2103.139 | 157331.094 | 6363.308
13 XVL.EXE 0.00% 0.000 n/a n/a n/a n/a
14 NOTEPAD.EXE 0.54% 0.211 5812.422 | 1691.610 | 42350.117 461.572
15 NLNOTES.EXE 0.00% 0.000 n/a n/a n/a n/a
16 MSOFFICE.EXE 0.80% 0.594 0.304 482.811 51554.863 3205.181
17 EUDORA32.DLL 0.00% 0.000 n/a n/a n/a n/a
18 COMCTL32.DLL 0.11% 0.355 165.966 5348.107 | 104309.852 | 1229.585
19 WINHLP32.EXE 0.12% 0.366 587.671 4628.859 | 80322.172 4773.610
20 COMDLG32.DLL 0.16% 0.658(10) 665.555 5418.014 | 93872.234 3990.986
21 TELNET.EXE 1.50%(10) | 0.281 786.732 98.220 6165.603 29.385
22 MSACCESS.EXE 0.02% 0.063 0.000 6349.296 | 162446.172 | 8231.838
23 SHELL32.DLL 0.16% 3.515(4) 194.749 6326.953 | 102685.852 | 6992.895
24 VBE.DLL 0.03% 0.115 364.109 3852.163 | 68813.672 8607.277
25 WINPROJ.EXE 0.00% 0.015 0.000 5739.186 | 511935.344 | 16069.720
26 SPIRIT.EXE 0.00% 0.000 n/a n/a n/a n/a
27 MAILNEWS.DLL | 0.00% 0.000 n/a n/a n/a n/a
28 ACRORD32.EXE 0.00% 0.000 n/a n/a n/a n/a
29 MPRSERV.DLL 0.11% 0.102 615.354 688.585 98153.148 1502.833
30 RASAPI32.DLL 0.10% 0.322 42.922 2042.578 | 72421.891 3039.882
31 OTHER-APPS 14.54% 12.833 2555.819 | 841.064 31665.572 660.975

Table 25: The Most Frequently Used Applications for Other Type Users
idle length (sec’) | 1/4 [ 1/2 |1 2 4 8 16 32 64 128
cumu. busy peri. | 4.6 7.9 13.4 | 20.1 | 25.1 | 28.7 | 31.9 35.4 39.3 | 42.8
idle length (sec’) | 256 | 512 | 1024 | 2048 | 4096 | 8192 | 16384 | 32768 | 66k | 131k
cumu. busy peri. | 48.3 | 55.7 | 63.3 | 69.1 | 76.5 | 83.4 | 87.8 90.9 96.9 | 97.7

Table 26: User Idle/Busy Time Distribution( “idle length” is user input idle length in seconds. “cumu. busy peri.” is the
percentage of cumulative busy period.)

idle length (sec’) | 1/4 [ 1/2 | 1 2 4 8 16 32 64 128

cumu. busy peri. | 1.6 16.9 | 22.1 | 31.1 | 33.9 | 39.9 | 44.8 49.3 60.0 | 68.4

idle length (sec’) | 256 | 512 1024 | 2048 | 4096 | 8192 | 16384 | 32768 | 66k | 131k

cumu. busy peri. | 73.9 | 81.7 | 86.7 | 89.8 [ 91.8 | 95.5 [ 95.7 96.2 96.6 | 96.6
Table 27: File System Idle/Busy Time Distribution( “idle length” is file system idle length in seconds. “cumu. busy peri.”

is the percentage of cumulative busy periods.)
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Figure 18: File System Idle/Busy Time Distribution of Different Applications
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