(Sequentiah‘ty and Prefetching in Database
Systems

ALAN JAY SMITH
University of Califomia-Berkeley

Sequentiality of access is an inherent characteristic of many database systems. We use this observation
to develop an algorithm which selectively prefetches data blocks ahead of the point of reference. The
number of blocks prefetched is chosen by using the empirical run length distribution and conditioning
on the observed number of sequential block references immediately preceding reference to the current
block. The optimal number of blocks to prefetch is estimated as a function of g number of “costs,”

, including the cost of accessing a block not resident in the buffer (a miss), the cost of fetching additional
data blocks at fault times, and the cost of fetching blocks that are never referenced. We estimate this
latter cost, described as memory pollution, in two ways. We consider the treatment (in the replacement
algorithm) of prefetched blocks, whether they are treated as referenced or not, and find that it makes
very little difference. Trace data taken from an operational IMS database System is analyzed and the
results are presented. We show how to determine optimal block sizes. We find that anticipatory
fetching of data can lead to significant improvements in system operation.

Key Words and Phrases: prefetching, databage systems, paging, buffer management, sequentiality,
dynamic programming, IMS
CR Categories: 3.73, 3.74, 4.33, 4.34

1. INTRODUCTION

Author’s address: Department of Electrical Engineering and Computer Sciences and the Electronics
Research Laboratory, University of Califomia—Berkeley, Berkeley, CA 94720.
© 1978 ACM 0362-5915/ 78/0900-0223 $00.75

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978, Pages 223-247.

224 . Alan Jay Smith

much more quickly and usually with much less computational overhead. IMS
(Information Management System/360) [10-12] uses this strategy, as we discuss
later. The INGRES database system [9] makes use of the 1/0 buffer pool
maintained by UNIX [19] for this same purpose. There is considerable scope for
optimizing the operation of the buffer pool, principally by controlling the selection

buffer pool. In this baper we will primarily be concerned with sequential prefetch-
ing as an algorithm for the selection of blocks for the buffer; we shall also look
briefly at other aspects of the selection and replacement problems.

A. Sequentiality

A characteristic of the database system that we study in this paper, and we
believe a characteristic of many other systems, is sequentiality of access. Many
queries require scans of an entire database in order to compute an aggregate. An
example might be: “Find the average salary of all residents of New York City,”

data fetching is less costly than demand fetching, we can expect a decrease in the
cost of 1/0 activity. It is obvious, and under certain conditions has been shown
formally [1], that when multiple block or anticipatory fetching is no “cheaper”
per block than demand fetching, demand fetching is an optimal policy. We
contend, and we shall discuss this in greater detail in a later section of this paper,
that fetching segments or blocks in advance of thejr use, and in particular fetching
several segments or blocks at once, is significantly less costly per block fetched
(with our cost functions) than individual demand fetching,

B. Previous Research

P

b

tic |
tai
36

pa
en |
ap
IM

da
be

pre
da:

bel
dis.
Sysi
oug

are
IM:

Cha

IMS
sCuss
pool
e for
ction
: the
>tehe-
iook

L we
any
An

”

iate
xial
1ial
zht
nes
the
zial
ists
zhe
ally
the
be

ate
ch
Ty

ne
-n

Ly
T

i Ui
» i

aq

i
2

Sequentiality and Prefetching in Database Systems . 225

In order to provide some background for the analysis of our data, we describe
below some of the significant features of IMS, A readable and more complete
discussion can be found in a book by Date [5], which also discusses other database
systems and organizations. The IMS manuals [10-12] provide much more thor-
ough coverage.

IMS is a hierarchical database system; that is, segments (tuples) in a database
are arranged logically in a tree structure such as that indicated in Figure 1. An
IMS implementation may consist of several databases, each of whic!; consists of

College
Engineering } Root

Departments Dean Central Office—l

Mechanical Eng. } [3 Knutr] {311 Bolt Hail |

[civii eng] | 1uine

l Electrical Eng. ,

Chairman Courses |
[M24 T Basket Weaving |
I m&:‘»] Floatation ,

Room Time Instructor , Students
39-311] [Ta:05 LProf_smith | [oo, £ 1104 | senior |

_ [_Joyhawk, L[8302 | senior]

[__Finch ¢ | 7eia | Junior]

Fig. 1

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

226 . Alan Jay Smith

a large number of such “trees.” The roots may or may not be sorted and may or
may not be indexed. In the system measured there were several databases; each
had the roots indexed. Access to units within a tree is through the root. Within
the tree, data is stored in a top-down, left-to-right order. That is, the following
items from Figure 1 would be stored in this order: Engineering, Mechanical
Engineering, Brown, M24 Basket Weaving, 39-311, 14:05, Prof. Smith, Finch C
7614 Junior, Jayhawk L 8302 Senior, Robin F 1104 Senior, M23 Floatation, ...,
and so on.

Two physical storage organizations are possible, hierarchical sequential and
hierarchical direct. In the former case segments are examined consecutively in
the order in which they are stored in order to find some position in the tree. In
the latter case, which describes the databases in this system, certain segment
instances are related by two-way pointers and these pointers can be used to skip
over intervening data. In either case the data is accessed using DL/1 (Data
Language/1), which implements nine operations. These are: GET UNIQUE (find
aspecific item), GET NEXT (get the next item), GET NEXT WITHIN PARENT
(get next item under the same root), GET HOLD UN IQUE, GET HOLD NEXT,
GET HOLD WITHIN PARENT, INSERT, REPLACE, and DELETE. In each
of the first six cases, the command can or must be qualified to partially or
completely identify the tuple in question. GET HOLD (items 4, 5, and 6) is
usually user prior to INSERT, DELETE, and REPLACE. Eighty-one percent of
all accesses measured (see below) proved to be for lookup only (GET) rather
than modification (INSERT, REPLACE, DELETE). Average frequency for
INSERT, REPLACE, and DELETE was 11 percent, 0.7 percent, and 8 percent,
respectively, with substantial variation between databases. -

A search for a uniquely qualified item, such as GET UNIQUE
(College(Engineering).Department(Mechanical).Chairman) will involve a search
starting at the appropriate'root and either scanning in sequential storage order if
the storage organization is sequential, or following pointers if the organization is
direct. Each of the segments referenced in the course of finding thé target segment
is called a path segment. A “GET NEXT” will also involve either sequential
search or search following pointers. Unless the pointers lead immediately to the
desired item, a significant amount of sequentiality will be evident in both cases;
in following a path to the target the direction of search is always forward in the
database.

A segment can be referenced only if it is in memory. For several efficiency
reasons, IMS groups segments into fixed size storage units called Pphysical blocks
(henceforth called blocks). In the particular implementation in question the block -
size was 1690 bytes for data blocks and 3465 bytes for blocks used to hold index
entries for the root nodes. The blocks are the unit of physical storage and data
transmission; a request for a segment will result in the block containing the
segment being transmitted, if necessary, from secondary storage to a buffer pool
of blocks kept in main memory.

The search for a target segment proceeds as follows:

i. Determine the first path segment to be examined.

ii. Search the buffer pool for the block containing the segment. If the block is
missing, then fetch the block (and remove a block if necessary to make room).
ACM Transactions on Database Systems, Vol. 38, No. 3, September 1978,

Sequentiality and Prefetching in Database Systems . 227

iii. Find the segment within the block. If this is the target segment, then
perform the desired operation. Otherwise, determine the next path segment and
continue at step 2.

We note that segments are commonly much smaller than blocks; for our data
the average segment size was 80 bytes. A large block size will result in many
segments being fetched at once; because of the sequential nature of segment
access, this often means that one block fetch will satisfy many segment requests.

D. The Data

The experimental data discussed in this paper was obtained as the result of a
two-step process. From the source IMS installation a trace of each DL/1 call
issued over a period of a week was made. The key portion of the database was
unloaded to tape, and the entire database system was reloaded at the IBM San
Jose Research Laboratory. The DL/1 calls were then run against the copy of the
database and a record of the target and path segments and block references was
made. No effort was made to tune the copied system; the original database design
was used without change, except that the reloading ensured that the logical and
physical database organizations coincided.,

The database system used was IMS/360 version 2.4, running under 0S/VS2,
release 1.6. The total size of the entire database was about 200 megabytes.

Our data analysis, in later sections, uses three sections of the entire seven-day
block reference trace. The part labeled “full tape” is the trace for the first day.
This first-day tape actually was generated in seven sections of approximately
equal size; the parts of the trace referred to as “part 1” and “part 2” are just the
first two segments of this day-long trace. _

This data was gathered by researchers at the IBM San Jose Research Labo-
ratory, and further discussions of IMS, the data gathering methodology, and the
data analysis may be found in a number of papers. The reader is referred to
papers by Tuel and Rodriguez-Rosell [30], Rodriguez-Rosell and Hildebrand
[21], Ragaz and Rodriguez-Rosell [18], Rodriguez-Rosell [20], Gaver;Lavenberg,
and Price [7], Lavenberg and Shedler [14], Lewis and Shedler [16], Lavenberg
and Shedler [15], and Tuel [29] for further information.

2. OPTIMIZATION OF PREFETCHING

A. The Model

As was discussed in the beginning of this paper, the efficiency of operation of a
database syst?jm can be increased by increasing the fraction of data references
captured by the main memory buffer. The only general method known by the
author to be effective in increasing the buffer hit ratio (for a fixed size buffer) is
to take advantage of sequentiality in the series of accesses—either by prefetching
or by increasing the block size. This issue is discussed further in the data analysis
section of this paper; for the formulation of our optimization results we rely on a
model as follows:

i. The physical layout of the database is the linear projection (as defined
earlier) of the logical structure of the database. Segments in the database will be
assumed to be numbered consecutively from 1 to S. Blocks in the database .

ACM Transactions on Database Systems, Vol. 3. No. 3, September 1978.

228 . Alan Jay Smith

(physical groupings of adjacent segments) are numbered consecutively from 1 to
B.

ii. The reduced block reference string is the concatenation of a sequence of
runs, each run having a length that is independently and identically distributed
with probability mass function (%), £ = 1, ..., oo.

The reduced block reference string (RBRS) is the sequence of block references

from which all immediate rereferences have been deleted. Thus if the original
block reference string was b;, b;, b, b, b;, bi, b,, bg, b, ..., then the RBRS would be
bi, bj, bi, by, by, It isn’t known whether knowledge of immediate rereferencing
provides useful information for either prefetching or replacement, but we choose
not to use that information here.
. A run is a sequence of reduced block references, such that the blocks are
numbered consecutively. More specifically, let bj, bjs1, ..y bjsk, bjsre1 be an RBRS,
and let b;+1 % b + 1, bjuss1 # bjx + 1, and b; + 1 = b, forj < i <j + k. Then the
RBRS sequence by, ..., b is defined to be a run of length k. We define the
predecessor of block b; to be block & — 1 and the successor to be block &; + 1.
From our definition, it may be seen that a block which is not preceded in the
reference string by its predecessor nor succeeded by its successor constitutes a
run of length 1.

We denote the probability distribution for the run length as follows:

lkR) =the probability mass function for the run length. /(%) is the probability
that a run is exactly & blocks long.
L(k) =the cumulative mass function for the run length = Y4, I(J).

L(k) =the survivor function for the run length = 1 — L(k).

L¢(jlk) =the survivor function, given that the run is of length £ or greater, equal
to L°(j)/L°(k — 1), j= k; equal to 1 otherwise. ’

H(k) =the hazard rate, equal to I(k)/L°(k — 1), the probability that the run
ends with the kth element given that it is at least % blocks long.

L =mean run length = ¥, il(i). :

B. The Costs of Sequential Prefetching

Our probabilistic model for the reference string as a concatenation of runs of
independent and identically distributed length suggests that we condition on the
previously observed run length to decide how many blocks ahead to prefetch. To
do so, we must determine the utility of successful prefetches and the problems
associated with unsuccessful ones. We therefore identify several costs in executing
I/0 operations: CPU time is necessary to initiate 1/0 operations and to update
all appropriate tables. The transfer of data requires memory cycles and thus
interferes with CPU operation. Transfer time, and often seek and latency time,
depending on the secondary storage device, prevent data from becoming imme-

! The function of our definition of a run is to allow us to estimate the utility of prefetching by assuming
that blocks are only used in runs. In fact, blocks may be referenced out of order, and a prefetched
block might be used, but not as part of the run for which it was fetched. Thus we could define a
generalized run such that block b, is the kth element of a generalized run if the predecessor of block
b, is in memory at the time block &;, is referenced and if block &, — 1 is the (k# — 1)-st element of a
generalized run. Such a generalization is beyond the scope of this study, both because of its complexity
and because of its dependence on the size of the memory.

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

Sequentiality and Prefetching in Database Systems . 229

diately available. The CPU in this case must either remain idle while the
information is fetched, or it must switch to another task, which again involves
overhead. Every time a block is fetched it may displace another block that is
about to be rereferenced. Thus, excessive fetching of unused blocks may actually
incréase the miss ratio. .

We shall group all of the above costs into three strategy costs and one effect
cost. Possible strategies, which involve strategy costs, are the following: (a) Fetch
a block on demand (as needed), (b) fetch a block in advance but not simultan-
eously with a demand fetch, and (c) fetch additional sequentially adjacent blocks
(“tag-along” blocks) when a block is fetched according to strategy (a) or (b). We
identify these costs as follows:

DFC: Demand Fetch Cost—the cost of fetching one block when it is needed
~ immediately.
PFC: Pre-Fetch Cost—the cost of fetching one block when it is not needed
immediately and when it is not a “tag-along” block.
TAC: Tag-Along Cost—the cost for each additional block transferred from
secondary storage when the initial block was fetched by strategy (a) or (b).

We also identify the following effect cost:

BFC: Bad Fetch Cost—the cost, in additional fetches, resulting from bringing in
a block that is not actually used. This latter effect is also known as memory
pollution. o

In determining and evaluating our cost function, we will make the following
assumptions in addition to those of our model: ;

iii. DFC, PFC, TAC, and BFC include all important costs, and further, the
total cost can be expressed as a linear combination of these individual costs.

iv. Blocks that are prefetched and used while still in memory do not contribute
to memory pollution. A

v. The effect of memory pollution is independent of the block replacement
algorithm and the memory capacity. -

vi. There is nothing other than run length that contributes to effective predic-
tion.

We will discuss the validity of some of these assumptions in later sections of
this paper.

Let us assume some strategy for prefetching. Associated with this strategy is a
set of numbers ﬁ(DF), E(PF), E(TA), and E(BF), where these are respectively
the expected number of demand fetches, prefetches, tag-along blocks, and bad
fetches per run. The expected cost per run C under this strategy is then

C = DFC*E(DF) + PFC*E(PF) + TAC*E(TA) + BFC*E(BF). (1)

From our assumptions above, specifically from ii and vi, to optimize system
operation it is sufficient to minimize the expected cost per run by choosing the
best prefetching strategy. We find that strategy below.

C. Prefetch Strategy Optimization
We shall consider two classes of prefetch policies; the second will be a generaliza-

tion of the first:
ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

230 . Alan Jay Smith

Class 1 prefetch policies permit any number ; additional sequential blocks to
be prefetched at a time when a demand fetch is required. No fetches are permitted
at other times. In many systems, PFC is comparable to DFC, so this restriction
follows naturally. :

Class 2 prefetch policies permit any number J additional sequential blocks to
be prefetched beyond the current reference at any time, whether or not a miss
occurred on this reference. From our set of costs, it is clear that there is no
advantage to prefetching if at the time of a reference to block b, block by + 1is
already in memory. Therefore it is assumed that prefetches are initiated only
when the current reference causes a fault or the block beyond the current
reference is not in the buffer.

1. Class 1 Prefetch Optimization. We define the remaining cost for a run
C(k), and the minimum expected remaining cost for a run Crin(k), as follows:
The remaining cost C(%) for a run is the expected cost of fetching all remaining
blocks of the current run, given that (exactly) £ — 1 blocks have already been
fetched and that the run is k or more blocks in total length. The minimum
expected remaining cost is taken over all possible class 1 fetch policies.

The value of Cynin(k) may be simply computed: It is the cost of fetching the kth
block in the run (DFC) plus the cost of j additional blocks (*TAC, j = 0), plus
the cost of the remainder of the run (L°(k + jlk)*(Crin(k + J + 1)), plus the
pollution cost (BFC*Yizs Uk + i)(j — i)/L°(k — 1)). This may be seen by
inspection (when the terms are collected) to be:

Crin(k) = DFC + min {j*TAC + Lk + jIR)*Crin(k + j + 1)
J

J=0

J-1
+ BFC*Y Ik + O)(j — i)/L(k — 1)}. 2)
=0

The mean minimum cost per run is then Cpix(1), and the mean cost per (reduced)
reference is Crin(1)/L. (The cost per actual reference can be obtained by dividing
the cost per reduced reference by the ratio of real references to reduced refer-
ences.)
If the run length is bounded, C,, may be computed straightforwardly: Let &0«
be the largest possible run length. Then Crin(Rmax) = DFC. Cpin(k), k < Emas, is
a function of Cnin(J), kmax = j > k, and other known parameters only, and the
computation is thus simple and proceeds from % = k.. to £ = 0. Since we shall
estimate the run length distribution L(%) from the observed sample L(%), the run
length is al}yays bounded. We hypothesize that for “well-behaved” distributions
L(k), arbitrary truncation of L(%) produces no ill effects. Since Ltk + k), j=1,
is always less than one, the effect of errors in C,.ix(j + £ + 1) can be seen to die
out.

The computation of Cy.i, also provides the optimal fetch policy. At the time of
a fault to the kth block in the run, it is optimal to fetch a(k) additional blocks,
where a(k) is the value of j that minimizes the expression above in eq. (2). We
note that after this computation has been performed, many values of C,.;.(k) and
a(k) are superfluous since there will never be a demand fetch to the Ath block in
the run. For example, let the optimum values of a be respectively « = {1, 1, 3, 3,

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978,

Sequentiality and Prefetching in Database Systems . 231

2, 4,4} for k =1 to 7. Then a fetch to the first block in a run will result in its
successor being fetched. Therefore, there can never be a fault to the second item
in a run. Similarly, the fault to the third block in a run fetches also the fourth,
fifth, and sixth. Thus it is sufficient to specify the fetch policy only at the possitle
fault points.

2. Class 2 Fetch Policies. In the case that fetching at other than fault times
is permitted, we must define a slightly different cost function. Let Cfmin(k) be the
minimum remaining future costs of a run, where this is defined to be the cost of
accessing all remaining blocks of the run, given that the run is % or more blocks
inlength and that exactly % blocks have already been fetched. (Note the difference
from the preceding definition.) We are led to this different definition because at
the time that we reference block % in the run, we must decide whether to bring
in block & + 1 at this time, or to wait to see if it is referenced first. The cost
‘breaks down into two parts, depending on this decision, and may be seen to be:

Cfnin(k) = min {[PFC + min {j*TAC + L + klk)Cluin(k +j + 1)

J=0

+ BFC*é e+)+ 1—1id)/Lk - 1)}},

i=0

[L”(klk)(DFC + mion { J*TAC +
J=
Le(k + jlk + 1)*Clin(k +7+1)

-1
+ BFC*JZ e +i+1)(— i)/L”(k)})]}. (3)

i=0

Again, we obtain the optimal fetch policy as a consequence of our computation
of Cfmin- Let B(k) be the value of j that minimizes the first term in eq. (3) above,
and let y(k) be the value of j that minimizes the second term. If the first term is
less, it is optimal to fetch a number of additional blocks (B(k) + 1"blocks) even
though it is not a fault time; if the second term is less, it is optimal to wait until
the (& + 1)-st block is referenced (if it is), at which time v{%) additional blocks
should be fetched.

The mean minimum cost per run is DFC + Cf,,;»(1), and the mean minimum
cost per (reduced) reference is (DFC + Cfpnin(1))/L.

3. COST ESTIMATION

A. Estimation of DFC, PFC, and TAC

In Section 2C we described an algorithm for computing the cost to bring into the
memory buffer the blocks in one run as a function of four parameters, DFC
(demand fetch cost), PFC (prefetch cost), TAC (tag-along cost), and BFC (bad
fetch cost), values for which have not yet been assigned. In this section we shall
discuss the choice of values for these parameters.

We will arbitrarily assign DFC a value of 1.0. All other costs will be assigned
relative to this fixed value. Since our cost structure uses a relative and not
absolute scale, we have lost no generality.

ACM Transactions on Database Systems, Vol. 3, No. 3. September 1978.

.232 . Alan Jay Smith

The values assigned to PFC and TAC (relative to DFC) are a function of the
architecture of the I/0 devices, the load on the system, the quality of the system
implementation, and the degree of multiprogramming, among other factors. The
costs for a prefetch include the CPU time involved in constructing and initiating
the channel program; the CPU idle time induced by the period during which the
channel, controller, and device are unavailable; the memory interference produced
by the transfer; and the possible delay in completing the fetch should the
prefetched block be needed quickly. The tag-along cost is almost the same as the
above, but includes the marginal additional cost for the channel program per
block transferred rather than the bulk of the overhead. Each of the components
of these costs will vary among machines and operating systems, with time
dependent factors such as the load on the system, and with the system configu-
ration (number and type of I/0 devices). We will therefore discuss some different
‘scenarios and some cost functions which might follow. Specific examples of cost
functions will be chosen and calculations presented in Section 4, where we discuss
the data we have analyzed. We note that the only way to determine a set of
verifiable values for these costs is to vary the prefetching algorithm on a specific
system driven repeatedly by the same benchmark and to estimate the parameters
statistically from the observed behavior.

The simplest case is one in which the system is completely I/0 bound; that is,
the system is assumed to always be waiting for an I/O operation to complete.
Consider quarter track blocks and random seeks; then the mean transfer, latency,
and seek times for the IBM 2314 disk are respectively 2% msec, 2% msec, and 60
msec. For the 3330 disk, the values are 4.2 msec, 8.4 msec, and 30 msec. (In fact,
random seeks are unlikely (see Smith [22, 23] for a relevant discussion), so the
mean seek time should probably be less than given.) The marginal wait for a tag-
along block is then (254)/ (60 +.2% + 2%) relative to the demand fetch wait for the
2314, or 0.079 (0.099 for the 3330). For % track data sets, the value would be 0.147
and 0.1721 for the two disks. Adding in the costs of the other overheads mentioned
above, a value of 0.2 for TAC seems reasonable. The value of PFC is higher, since
it includes the overhead for performing the I/0 and may include more nonover-
lapped transfer time. PFC is almost certainly lower than DFC since some of the
1/0 wait time is assumed to be overlapped with the processing of the remaining
block in the run. A value of 0.7 seems to be a plausible value for PFC.,

An alternative assumption for system operation is that the CPU is fully utilized
and that the demands on the CPU limit the throughput of the system. This would
be reasonable in a system with many storage (I/0) devices and a great deal of
memory, so that all 1/0 could easily be overlapped with computation. In this
case the values assumed by DFC, PFC, and TAC depend on the exact time it
takes to execute the appropriate code (I/O initiation, task switching, if any, etc.).
It has been suggested to the author that values of 0.2 and 0.9 for TAC and PFC
seem reasonable. ;

For other cases, intermediate between 1/0 bound and CPU bound, the values
assigned to the cost variables will vary. It is to be hoped that because of the
uncertainty in the cost variables, the cost function will be relatively flat for
varying degrees of prefetching. Computations performed by the author indicate
that this is the case.

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978

Sequentiality and Prefetching in Database Systems . 233

B. Estimation of BFC

It remains to estimate a value for BFC, the additional cost for fetching a block
that is never used. This additional cost arises in the case that a block is removed
from the buffer pool in order to make room for the new fetch and that this old
block is quickly rereferenced. We assume that every block that is expelled from
the buffer and then reused is fetched at a cost of 1.0; we now estimate the
probability that a block so expelled is reused.

Before we describe two methods of calculating the value of BFC, we define a
specific paging algorithm. In MULTICS [4] and CP-67 [3], a paging algorithm
commonly referred to as the “clock” paging algorithm is used. We define here
the:

GENERALIZED CLOCK PAGE REPLACEMENT ALGORITHM. With
each page frame in memory we associate a count field and we arrange these count
fields in a circular list. Whenever a page is referenced, the associated count field
is set to Z. When a page fault occurs, a pointer that circles around this circular list
of page frames is observed. If the count field pointed to is zero, then the page is
removed and the new page is placed in that frame. Otherwise, the count is
decremented by 1, the pointer is advanced to the next count field, and the process
is repeated. When a new page is placed in the page frame, the count field is set to
i if the page is to be referenced (demand fetch) and it is set to J if the page has
been prepaged and is not immediately referenced. We abbreviate this algorithm
by writing CLOCKP(j, i). The “P” indicates that this is a prepaging algorithm
(the prepaging strategy has not been specified). When no prepaging is involved,
the algorithm is abbreviated CLOCK(i). The algorithm used in MULTICS and
CP-67 is CLOCK(1).

We have chosen to define this algorithm in such a manner because the existence
of the parameters i and j will facilitate certain experiments to be described.

We will also have occasion to, refer to the Working Set paging algorithm [6]
and the Least Recently Used (LRU) paging algorithm [17], with which we assume
the reader is familiar. A

We will employ two methods to estimate BFC; both methods are rather ad
hoc. Although this parameter is of substantial importance, there does not seem
to be any simple and accurate estimation method. From the experiments de-
scribed later in this paper, it appears that the results are not unduly sensitive to
inaccuracies in the estimate for BFC.

1. Estimation Using Rereference Probability. Our first estimate for BFC will
be the following: The probability of removing a block that is about to be
rereferenced (and thus initiating a block fault) is estimated to be the probability
that a block whose count field is 0 is rereferenced before being removed. (The set
of blocks eligible for replacement is the set with the count fields equal to zero.)
This probability was estimated for CLOCK(1) and appears in Figure 2 for a range
of memory sizes and for parts 1, 2, and the full tape. We note that this value
varies widely over the range of memory sizes and over portions of the data traces.
This variation suggests that the behavior of the system is not stationary. We will
discuss this issue to some extent in Section 4. ‘

2. Estimation Using Marginal Changes in Capacity. An alternative method
for estimating the value of BFC is to use the observation that for every block

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

234 . Alan Jay Smith

fault except those required to fill the buffer the first time, a block must be
removed from the buffer. When a prefetch takes place, a block must be removed
prematurely from the buffer; we choose to look at this premature replacement as
a slight reduction in the effective size of the buffer.

Let NF(A, C, T) be the total number of blocks fetched (using demand fetching)
for a trace T using buffer capacity C (in blocks) under block replacement
algorithm A. Let G be the (reduced) trace length and M(A, C, T) be the miss
ratio. By definition, M(A, C, T) = NF(A, C, T)/G. We abbreviate M(A,C, T) as
M and NF(A, C, T) as NF. Let AC be the effective change in the capacity of the
buffer from a single prefetch. We shall assume ,

AC = C/NF. (4)

“The rationale behind eq. (4) is as follows: Consider a space-time plot of buffer
capacity such as is shown in Figure 3(a), where time advances by one unit at fault
times. If we do a prefetch, then the prefetched page will require approximately C
fault times to be removed (e.g. for FIFO replacement), giving a net effect for the
space-time plot of that shown in Figure 3(b). The unshaded part of the figure has
an area equal to (C — AC)*NF. AC is then found to equal the expression in eq.
(4).

The change in the miss ratio (AM) is then equal to AM = (aM/8C)-AC. The
change in the number of faults ANF is simply ANF = AM- G. So, continuing, we

RE-REFERENCE PR@BABILITY

0-4 i T l 1 T L 1] ¥ T T T , T T T] l ¥ T 1 ¥ l 1 1]
0.3 —]
- . i
"- e -
- !]
©® 0.2 _
< B .
o i FULL TAPE i

N .
x - -
a 5 N
0.1 —
- 1
0.0 " 1 1 1 1 1 I i | 1 1 /] I 1 i | 1 l i A 1 1 l 1 L 3

0 200 400 600 800
MEMBRY SIZE (KILPBYTES)
Fig. 2

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

have

Sequentiality and Prefetching in Database Systems . 235

ANF = (aM/3C)-G-AC = (dM/3C)-G-C/NF
= C-(0M(4, C, T)/3C)/M(A, C, T). (5)

In Figure 4 we present the miss ratio for the full (one-day) trace for three
paging (block replacement) algorithms: CLOCK(1), LRU, and Working Set. This
miss ratio is seen to be relatively insensitive to the algorithm, and it thus appears
that any choice of replacement algorithm will yield approximately the same
result. We note in particular that the results for LRU and CLOCK(1) are
indistinguishable. Calculating the value of BFC that we obtain from eq. () yields

c ¢ v :fi !
Gutter Capacity
0 0
0 Faults NE ° p‘lr:-f(:;::'; v
(a) (b)
Fig. 3
MISS RATIZ VS. MEM@RY SIZE
0-14 P_l-l l 1 1 1 i l I LI Ll l T 1 T ¥ [T T L 1 I l-l
- LRU -
0.12 — —
- cLaCcK) .
S - WERKING SET .
i
—~ 0.10 — —
< - N
(0% N]
(f) - -
U) 0008 — -
=t rd -
= - WBRKING SET]
0.06 — LRU, CLBCK() -
0.04 ':]-l I 1 1 L [} I 1 1] L l i 1 L i l 1 1 1 1 l 1
O 200 400 600 800

MEMBRY SIZE (KILBBYTES)

Fig. 4

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

236 . Alan Jay Smith

values of 0.308, 0.3, and 0.21 at buffer sizes of 35K, 100K, and 500K, respectively.
Since a prefetched but unused page would probably be flushed somewhat sooner
than C fault times, these values might actually be a little lower. In any case these
values are comparable to tnose obtained earlier from Figure 2. Henceforth, a
value of 0.2 for BFC will be chosen as representative.

3. Replacement of Prefetched Blocks. There is some question as to the
treatment of prefetched blocks—should they be considered for replacement as if
they had been brought into the buffer by a demand fault (e.g. placed at the top
of the LRU stack) or should they be given somewhat less favorable replacement
status (e.g. middle or bottom of LRU stack)? We looked at this question by
experimenting with a variant of the CLOCKP(j, i) algorithm. The variant we
used was to always fetch a block’s successor if the successor was not in memory
at the time the block was referenced. We define the miss ratio in this case as the
fraction of data references that required an immediate data fetch (the block was
missing). The prefetch ratio is the ratio of the number of blocks prefetched to the
total number of references. The transfer ratio is the sum of the prefetch and miss
ratios. Three values of (j, i) for this CLOCKP(j, i) algorithm were used:
CLOCKP(0, 1) CLOCKP(1, 1), and CLOCKP(0, 3). The first places the prepaged
blocks in the middle of the “stack,” the second places them at the top of the
stack, and the third near the bottom. It may be seen from Figure 5 that the lower
the prefetched blocks are placed in the stack, the lower the miss ratio and the

MISS, TRANSFER, PREFETCH RATIQ

1] T T T T T T 7T ’ 1 T ¥ T T T T
S 0.20 - TRANSFER RATID 7
'-—
«
@
= CLBCKPI(1,1) ,,
P CLBCKP(D,1)
w 0.10 — CLBCKP(O,3)]
o PREFETCH
@ RATIO
a
o

CLBCKPU,1)
[BE] - ’ -
w 005 CLBCKP(Q,1)
2 ‘ CLPCKP(D,3)
é MISS RATID
— 0.03Fr -
9
"}—:‘ i 1 1 1 Lt 1} 1‘ 1 1 i i | S S W |
50 100 500
MEMBPRY SIZE (KILBBYTES)
Fig. 5

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

e

Sequentiality and Prefetching in Database Systems . 237

higher the prefetch ratio. The transfer ratio, as the sum, is somewhat more stable.
. The effect of placing a prefetched block at the actual bottom of the stack has not
been investigated here; the reader is referred to [18] for a further discussion of
this question. In any case the effect of stack placement seems to be minor and
will not be considered further.

4. DATA ANALYSIS AND OPTIMIZATION RESULTS

Our algorithms for cost minimization in Section 2 were derived by assuming that
certain conditions held, in particular that the (reduced) reference string consisted
of a sequence of runs, the length of each run being chosen independently from
the stationary run length distribution. The utility of our optimization procedure,
however, should not be judged by the accuracy of the model. The large sample
sizé (there were 254,329 runs in the full one-day trace) virtually precludes
statistical acceptance of such a simple model in any case, and the results presented
in Figure 2 have already suggested that system behavior is not entirely stationary.
To provide some insight into the effect of nonstationary behavior, separate
analysis has been done on the aforementioned pieces of data: the first two trace
sections and the full day’s trace.” As will be seen, differences between the sections
of the trace seem to be small (although not statistically acceptable) and the
prefetching algorithms developed are similar.

A. Run 'Length Distribution

The empirical run length distribution, as defined in Section 2, was measured for
the first two sections of the trace tape and for the full one-day tape. This
distribution is plotted in Figure 6 on a log scale and is also listed in Table I. The
observed maximum run length for the full tape was over 1000 blocks, but as may
be seen in Figure 7, only 0.1 percent of the run lengths exceeded 20. When,
however, one considers the number of blocks in long runs rather than the number
of long runs themselves, the relative importance of optimizing the performance in
this case becomes apparent. Further, we note that the possibilities for optimiza-
tion lie largely with long runs. Thus, the low probability of finding long runs
understates their importance.

Figure 7 presents the empirical survivor function (L°(k)) of the run length on
a logarithmic scale for the different parts of the tape. A number of observations
are possible from this figure. Although many of the characteristics of the different
parts of the tape are different (see Figure 2 for example), the log survivor function
doesn’t seem fo vary greatly. It may be seen that the curve is largely along two
straight lines, which suggests that should we wish to model the run length
distribution, a two-part hyperexponential would be appropriate. This also sug-
gests that we may wish to have at least two different prefetching policies—one
for runs which have gone on for less than four blocks and one for runs of greater

- length.

? Further consideration of stationarity and a more sophisticated and extensive sectioning of the trace
would probably have been desirable. Unfortunately, the author no longer has possession of the data.
The treatment of this question is more than adequate, however, considering the difficulties inherent
in such other problems as estimating the parameters.

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

238 . Alan Jay Smith

RUN LENGTH PR@BABILITY DENSITY

PART 1

>—
(.
= FULL TAPE
@
s 1073
S}
&
107!
107°
1 1 1 ,] 1 i 1 l i 1 1 1 l 1 1 1 1 , 1] /] 1 l 1
0 5 10 15 20 25
RUN LENGTH
Fig. 6

Table I. Run Length Distribution

Probability

Length V' Part1 Part 2 Full tape
1 0.8144 0.7869 0.7774 -
2 0.1104 0.1281 0.1299
3 0.0319 0.0538 0.054
4 0.0103 0.0113 0.0122

5 0.0069 0.00463 0.00694

6 0.00394 0.00243 0.00379
7 0.00241 0.00147 0.00239
8 0.00163 0.00073 0.00124
9 0.00155 0.00050 0.00115

The empirical expected future run length (efrl(x)), that is, the expected addi-
tional run length given that the run length has already reached x, is plotted in
Figure 8. We may define efrl(x) from the run length distribution as:

efrlix) = ¥ (j— x)l()/L(x).
: 1

J=x+

We observe that efri(x) is geneally increasing; that is, the longer the current run
length, the longer the run is likely to continue. This suggests fetch policies that
fetch progressively larger numbers of blocks as the length of the run increases.

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

Sequentiality and Prefetching in Database Systems « 239

RUN LENGTH SURVIV@R PROBABILITY

lllllTllllllll‘lll]lllllll

1 llllll'
i lllll|l

PROBABILITY
N
LRI llll 1

11 llllll

4
1

107 |- E
:] 1 1 i l i 1 1 1 I 1 1 1 i l 1 [_— L l | | H
0 5 10 15 20 25
RUN LENGTH
Fig. 7

The hazard rate for the distribution has been plotted in Figure 9. The hazard
rate is defined as H(k) = I(k)/L‘(k — 1), which is simply the probability that the
run ends with the kth block, g\ven that it has reached the kth block. The hazard
rate can be generally seen to be declining until about nine, after which it levels
off. A high hazard rate is a good indication that prefetched blocks will not be
used and conversely. ‘

From the data presented in Figures 6-9, we can conclude that a prefetch policy
that conditions on the run length would likely fetch increasingly larger numbers
of blocks (up to some maximum) as the run progressed. Long runs, therefore,
would not be as costly in terms of block faults as they would be without
prefetching. The high hazard rate for short runs, however, indicates that always
prefetching ahead a fixed number of blocks or increasing the block size would not
yield the same improvement.

B. Optimized Prefetch Strategies

The optimized prefetch strategy has been calculated for a number of different
cost functions using the methods of Section 2 of this paper and the empirical run
length distribution. The results of these calculations appear in Tables II-V. The
strategy indicated may be interpreted for a strategy on line j which is an integer
% with no asterisk as follows: If the jth block in a run is referenced and the
reference causes a fault, then at the same time bring in any of the %k blocks that
follow block j (f + 1,7 + 2, ..., + k) in the run if they are not already in memory.

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1975.

240 . Alan Jay Smith

EXPECTED ADDITI@NAL RUN LENGTH

60—

40—

FULL TAPE

20— | -

éXPECTED ADDITIPNAL RUN LENGTH

10 15 20 25
CURRENT RUN LENGTH

Fig. 8

If there is an asterisk (%*) on the strategy, and if the successor of the Jth block is
not in memory, then bring in the next & blocks in the run (also providing they are
not already in memory) whether or not a fault has occurred on this reference.

We note that although the strategies vary somewhat among the different parts
of the trace, the variation is not very large, and that some very simple strategy,
in line with the sample strategies indicated in Tables II-V, is likely to be adequate.
We observe, conversely, that for the parameter values chosen, a fixed prefetch
strategy in which every time a block is fetched, % successors are fetched as well,
is not very close to optimal. In Subsection C we compare optimized with other
strategies with regard to their costs and a significant (5-20 percent) cost difference
will be obsérved.

C. Testing a Simple Strategy

Because there is some nonstationarity in the data, the optimal prefetch strategy
can be seen to vary among sections of the trace. It also varies as a function of the
estimates for the cost parameters, and as noted, those estimates are quite crude.
Therefore, the usefulness of optimized prefetching in a real system depends not
on whether an optimized strategy works well for the trace from which it is
derived, but whether a simple strategy (not necessarily identical to those sug-
gested) decided on in advance works well. We chose what we call Strategy(0, 1,
2, 3, 4): At fault times, if the run length is %, £ < 5, prefetch # — 1 blocks in
addition to the one needed; else prefetch 4 additional blocks. This strategy is

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978,

Sequentiality and Prefetching in Database Systems . 241

O 8 LI 1 I 1 L B } l VT 17 I | IR 1 ¥ l 1 T T T
7 0.6 — Y \«ParT 2 —
H = -
= - «FULL TAPE .
o B .
(p -
S 0.4 - PART 1]
Q R 4
i L N
a - FULL TAPE i
g - -
0.2 (— —
< = .
™~ i
<
- » o
0.0 — —
i] i1 l 1 1 1 1 l 1 I 1] l 1 1 1 1 | L i 1 1 1
0 S 10 15 20 - 25
RUN LENGTH
Fig. 9
Table II. - Optimized Prefetch Strg,tegy " Table III. Optimized Prefetch Strategy
Cost: DFC = 1, PFC = 0.7, TAC = 04, BFC = Cost: DFC = 1.0, PFC = 1.0, TAC = 0.0, BFC
0.2 \ =0.2
Strategy i Strategy
Runlength Part1 Part2 Full tape Runlength Part1 Part 2 Full tape
1 0 0 0 1 0 0 0
2 0 0 0 2 1 1 1
3 0 0 0 3 2 1 1
4 1 1 1 4 3 1 2
5 2 2 1 5 7 3 3
6 0 2 2 2 6 6 5 5
7 A3 3 3 7 5 7 6
8 4* 3* 2* 8 5 8 5
9 3* 2* 1* 9 6 7 7
10 2 2 2 10 5 6 6
11 1* 3* 2* 11 5 5 5
’ 12 0 2 1 12 5 6 5
13 2* 3* 2* 13 5 5 5
14 1* 2* 1 14 4 9 5
15 1 2* 2 15 4 8 4

similar to the strategies in Tables IIT and IV, but is not the same as either one of

them.
The result of this simulation is presented in Figure 10, where we see the
prefetch ratio, miss ratio, and transfer ratio. We have also plotted the miss ratio
ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

242 . Alan Jay Smith

‘ Table IV. Optimized Prefetch Strategy Table V. Optimized Prefetch Strategy
Cost: DFC = 1, PFC = 1.0, TAC = 0.2, BFC = Cost: DFC = 1, PFC = 0.2, TAC = 0.2, BFC =
0.2 0.2
Strategy Strategy
Runlength Part1 Part?2 Full tape Runlength Part1 - Part2 Full tape
1 0 0 0 1 0 0 0
2 1 1 1 2 1* 1* 1*
3 1 0 1 3 1* 1* 1*
4 2 2 2 4 1* 1* 1*
5 2 2 2 5 1* 1* 1*
6 4 4 4 6 1* 1* 1*
7 5 5 3 7 1* 1* 1*
,, 8 4 5 4 8 1* 1* 1*
9 3 4 3 9 1* 1* 1*
10 3 4 3 10 1* 1* 1*
11 3 4 3 11 1* 1* 1*
12 3 4 3 12 1* 1* 1*
13 3 4 4 13 1* 1* 1*
14 4 4 4 14 1* 1* 1*
15 3 3 3 15 1* 1* 1*

for the CLOCK(1) algorithm for comparison. It may be seen that a substantial
reduction in the miss ratio has been achieved at a very small cost in wasted block
transfers.

In Figures 11 and 12 the cost of our (0, 1, 2, 3, 4) strategy is compared with
strategies which either are demand (N = 0), or prefetch fixed numbers of blocks
ahead (N = 1, N = 2, N = 3). Prefetch costs (TAC) of 0.2 and 0.3 have been

- chosen as realistic and representative. The cost (C) is then C = miss ratio +
TAC+prefetch ratio. Prefetching at other than fault times has not been considered
in this example, and the effect of bad fetches (BFC) is automatically included in
the miss ratio. We see that our “optimal” strategy has a cost of from 5 to 10
percent less than that for N = 1 and N = 2 strategies and from 10 to 15 percent
less than that for N = 3, and is at least 20 percent better than simple demand
fetching. (Because these values are for only part of the full day trace, they are not
directly comparable with Figure 10.) These differences, in the opinion of the
author, are significant.

5. OPTIMIZATION OF BLOCK SIZE

The meth'i;ds of the preceding sections may be used to compute the optimal block
size. In Section 2 the average cost per reference was given as Cpin(1)/L or (DFC
+ Cfnin(1))/L. The most straightforward way and also the most accurate way to
optimize the block size is to measure the run length distribution function l(k, B)
where B is the block size; to determine PFC(B), TAC(B), DFC(B), and BFC(B)
where the costs and the run length distribution are now functions of the block
size; and to compute Cyix(1, B)/L(B) or (DFC(B) + Cfnin(1, B))/L(B). The block
size yielding the minimum cost per reference is then clearly the optimum block
size.

One would expect that the run length as a function of B, the block size, could
be determined from the run length in bytes, but this is not entirely correct. A

ACM Transactions on Datahase Systems, Vol. 3, No. 3, September 1978.

-

Sequentiality and Prefetching in Database Systems - 243

PPERATION BF STRATEGY (0,1,2,3,4)

-l 1 l T] T T l T 1 T ¥ l 1 i L H I H 1 4 1 T [1 i
o |
l__ - -
< | —
o 015 i TRANSFER RATIO (0,1,2,3,4) i
hs o
’L_) ~ i
Ll i MISS RATI® - CLBCK() i
w
w 0.10 — —
@, i .
a i i
%‘ - MISS RATIZ (0.1,2,3,4) .
% 0.05 |]
=z i —:
< -
E - PREFETCH RATI® (0.,1,2,3,4) 7
0 - -
9 D.O 1 1 I 1 i 1 1 l 1 1 1 4 l ' i} L L] 1 1 1 L l] 1
s 0 200 400 600 800

MEMBRY SIZE (KILZBYTES)

Fig. 10

certain fraction of the time [18] a run will not reference consecutive segments but
will instead reference every second, third, or nth segment. In the case that the
block size is large enough, this will appear as a run of consecutive blocks. These
alternate segment references, however, do not appear as consecutive runs when
taken at the segment or byte level. For all block sizes large enough to contain
three or more segments [18], one run length distribution will suffice, since only
rarely are there runs that skip more than two segments at a time; for smaller
block sizes the calculation is not so straightforward. With most direct access
storage devices, block sizes will be at least 800 or so bytes.

The optimization described in this section has not been performed, although it
is straightforw%.rd but tedious. Ragaz and Rodriguez-Rosell [18] report that
enlarging the block size produces miss ratios only slightly inferior to comparable
fixed prefetching strategies such as were used for comparison in Figures 11 and
12. As noted in Section 4C, however, fixed prefetching is measurably inferior to
optimized variable prefetching. There is, therefore, reason to believe that selective
prefetching when combined with a carefully chosen block size can yield a
significant improvement over the observed behavior.

6. ALTERNATIVE PREFETCHING STRATEGIES

A number of different characteristics of the trace data were examined in order to
devise improved prefetching algorithms and improved block replacement algo-

rithms. We briefly discuss two of these characteristics here.
ACM Transactions on Database Systems, Vol. 3, No. 3. September 1978.

Rk |

244 . Alan Jay Smith

CBMPARATIVE CBSTS FBR PREFETCH STRATEGIES

1 T T H T T 7T ' ¥ T i T T T i
0.200 — PREFETCH CRST =~ .2 —:
B N=0D PART 1 BF TAPE N
—0-175 I]
w _ _
= | i
(@8] o .
&) N _
w | _
= |]
50.125 —]
'._ - —
w i -
0.100 [~ ~
0'075 —_l \ 1) Lo) 1) l 1) 1 L1 ||_-:
10 50 100 500
MEMBPDRY BUFFER SIZE (KILBBYTES)
Fig. 11

In Table VI we present a number of statistics of the empirical run length
distribution for the sections of the trace. The mean run length can be seen to be
essentially the same for all\sections of the trace, but the variance changes
significantly. The changes in the variance may be due to nonstationarity or may
be due instead to the random occurrence of samples from a highly skewed
distribution. For example, one run of more than 1000 blocks was observed, and
this instance would greatly perturb the estimate of the variance,

Autocorrelation coefficients for time series are defined only when the series is
stationary. A stationary, uncorrelated series will have estimated autocorrelation
coefficients of order % of mean 0 and variance 1/(n — k) for a series length of n.
Despite the questions about the stationarity of the series, we have computed the
first three adtocorrelation coefficients for the sequence of run lengths and present
that data in Table VI along with the 5 percent significance level. Even though
some of the autocorrelations are statistically significant, they are far too small in
magnitude to have any useful predictive power. We also note that trends in the
data usually are reflected in large positive autocorrelation coefficients, so the lack
- of genuinely large correlations suggests that the run length distribution may be
sufficiently stable for our purposes. We conclude from the measured autocorre-
lation coefficients that knowledge of previous run lengths is unlikely to be useful
for estimating the length of the current one.

It was hypothesized that consecutive interreference intervals to the same block
ACM Transactions on Datahase Systems, Vol. 3, No. 3, September 1978,

[

Sequentiality and Prefetching in Database Systems . 245

CPMPARATIVE CBSTS FBR PREFETCH STRATEGIES

T T llllll‘ T T L

PREFETCH CBST = .3
PART 1 BF TAPE]

0.20 — —
f- - —
[5)] L 4
Q
L) - -
>— - -
&s} - —_
& 0.s
'— - —
< R N=0,1,2,3,4
ad
r—- -
2) X
0.10 —
o ~
I 1 1 1 1 1 P 11] 1 1 1 1 1,11
10 50 100 500
MEMBRY BUFFER SIZE (KILBBYTES)
Fig. 12
Table VI. Run Length Characteristics
) Part1 Part? Full tape
Mean run length 1.567 1.54 1.57
Variance of run length 15.9 10.4 29.7
Coefficient of variation 2.54 2.09 3.47
Autocorrelation of run length
First order 0.01 0.006 0.0031
Second order 0.086 0.009 0.114
Third order 0.014 —0.003 0.00265
5 percent significance level 0.0085 0.0106 0.0039
Number of runs 52,796 34,117 254,329

7

would be related in some simple manner. A scatter plot of these interreference
intervals was made and no useful pattern emerged.

The author ran other experiments (not described here) and discussed the data
with other researchers who were also studying the same traces. No other useful
predictor for prefetching was found. There is a large variety of experiments that
were not tried (including some suggested by more recent research on prefetching),
however, and thus whether something besides sequentiality is useful for prefetch-

ing remains an open question.
ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

246 . Alan Jay Smith

7. CONCLUSIONS

Sequentiality of access is a predictable consequence of many types of database
organization. By anticipating this sequentiality of access, it is possible, using
prefetching, to achieve a reduction in 170 delays and processing. By conditioning
on the run length, we have been able to optimize the degree of prefetching. As
indicated in Section 5, our method of calculating the best degree of prefetching
is also applicable to the choice of block size.

We believe that the implementation of our results will vield measurable
improvements in the operation of many database systems.

ACKNOWLEDGMENTS

The author would like to thank IBM as a whole, whose support and facilities
made possible the research reported here. In addition, the following individuals
(among others) were helpful both by discussing with the author the technical
content of this work and in aiding in its realization: Edward Altman, David Choy,
Thomas Price, Juan Rodriguez-Rosell, Donald Slutz, and William Tuel. Complete
responsibility for the accuracy of the results reported here of course rests with
the author.

REFERENCES
1. AHo, A.V., DENNING, P.J., AND ULLMAN, J.D. Principles of optimal page replacement. J. ACM
18, 1 (Jan. 1971), 80-93. }
2. BAER, J.L., AND SAGER, G.R. Dynamic improvement of locality in virtual memory systems. IEEE
Trans. Software Eng. SE-2, 1 (March 1976), 54-62.
3. Barp, Y. Characterization of program paging in a time-sharing environment. IBM J. Res.
Develop. 17, 3 (Sept. 1973), 387-393.
4. Corgaro, F.J. A paging experiment with the Multics system. In In Honor of P.M. Morse, M.1.T.
Press, Cambridge, Mass., 1969, pp.'217-228. '
5. DATE, C.J. An Introduction to Data Base Systems. Addison-Wesley, Reading, Mass., 1975.
6. DENNING, P.J. The working set model for program behavior. Comm. ACM 11,5 (May 1968),
323-333.
7. GAVER, D.P., LAVENBERG, S.S., AND Pricg, T.G. Jr. Exploration analysis of access path length
data for a data base management system. IBM J. Res. Develop. 20, 5 (Sept. 1976), 449-464.
8. Gorp, D.E,, AND Kuck, D.J. A model for masking rotational latency by dynamic disk allocation.
Comm. ACM 17, 5 (May 1974), 278-288.
9. HELD, G.D., STONEBRAKER, M.R., AND WoNG, E. INGRES—a relational data base system. Proc.
AFIPS 1975 NCC, AFIPS Press, Montvale, N.J., pp- 409-416. _
10. IBM Core. Ififormation Management System/360, Version 2, General Information Manual. Form
GH20-0765-3, IBM Corp. Tech. Pub. Dept., Palo Alto, Calif., 1973,
11. IBM Corp. Information Management System/360, Version 2, Application Programming Refer-
ence Manual. Form SH20-0912, IBM Corp., Palo Alto, Calif., Nov. 1973.
12. IBM Corp. Information Management System/360, Version 2, System Programming Reference
Manual. Form SH20-0911, IBM Corp., Palo Alto, Calif,, Sept. 1974.
13. JosEpH, M. An analysis of paging and program behavior. Comptr. J. 13, 1 (Feb. 1970), 48-54.
14. LAVENBERG, S.S., AND SCHEDLER, G.S. A queueing model of the DL/I component of IMS. Res.
Rep. RJ 1561, IBM Res. Lab., San Jose, Calif., April 1975. Republished as [15].
15. LAVENBERG, S.S., AND SHEDLER, G.S. Stochastic modelling of processor scheduling with appli-
cation to data base management systems. IBM .J. Res. Develop. 20, 5 (Sept. 1976), 437-448.
16. LEw1s, P.A.W., AND SHEDLER, G.S. Statistical analysis of transaction processing in a data base
system. Res. Rep. RJ 1629, IBM Res. Lab., San Jose, Calif., Sept. 1975. Republished as: Statistical
analysis of non-stationary series of events in a data base system. IBM J. Res. Develop. 20, 5

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978

17.
18.
19.
20.

21.

22,
23,

Sci. and Syst., Johns Hopkins U., Baltimore, Md., April 1976, 593-601.
24,
25.
26.
27.
28.
29.

30.

Sequentiality and Prefetching in Database Systems - 247

(Sept. 1976), 465-482.
Martson, R., GecsEl, J., SLutz, D.R., AND TRAIGER, LL. Evaluation techniques for storage

hierarchies. IBM Syst. oJ. 2 (1970), 78-117.

Racaz, N, AND RoDRIGUEZ-ROSELL, J. Empirical studies of storage management in a data base
system. Res. Rep. RJ 1834, IBM Res. Lab., San Jose, Calif., Oct. 1976.

RrtcHIE, D.M,, AND THOMPsSON, K. The UNIX time-sharing system. Comm. ACM] 7, 7 (July
1974), 365-375. . ’
RoDRIGUEZ-ROSELL, J. Empirical data reference behavior in data base systems. Computer 9, 11
(Nov. 1976), 9-13.

RopRrIGUEZ-ROSELL, J., AND HILDEBRAND, D. A framework for evaluation of data base systems.
Res. Rep. RJ 1587, IBM Res. Lab., San Jose, Calif., May 1975. Also in Proc. Int. Comput. Symp.,
Antibes, France, June 1975.

SmiITH, A.J. A locality model for disk reference patterns. Proc. IEEE Comptr. Soc. Conf,, San

Francisco, Feb. 1975, 109-112.
SmiTH, AJ. Analysis of a locality model for disk reference patterns. Proc. Second Conf. Inform.

Smith, A.J. Sequential program prefetching in memory hierarchies. April 1977; submitted for
publication. To appear, Computer.

TrIvEDI, K.S. Prepaging and applications to array algorithms. IEEE Trans. Comptrs. C-25, 9
(Sept. 1976), 915-921.

Trivepl, K.S. Prepaging and applications to the STAR-100 computer. Proc. Symp. High Per-
formance Comptr. and Algorithm Organization, Champaign, IlL., April 1977, -

Trivep:, K.S. An analysis of prepaging. Comptr. Sci. Rep. CS-1977-7, Duke U., Durham, N.C,,
Aug. 1977.

TrivEDL, K.S. On the paging performance of array algorithms. IEEE Trans. Comptrs. C-26, 10
(Oct. 1977), 938-947.

TUEL, W.G. JR. An analysis of buffer paging in virtual storage systems. Res. Rep. RJ 1421, IBM
Res. Lab., San Jose, Calif., 1974.)

TuEL, W.G. JR., AND RODRIGUEZ-ROSELL, J. A methodology for the evaluation of data base
systems. Res. Rep. RJ 1668, IBM Res. Lab., San Jose, Calif., Oct. 1975.

Received January 1977; revised October 1977

A

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

