SPEC Newsiotter

Volume 3, Issue 4

December 1991

CINT2.0 and CFP2.0 Benchmark Descriptions

By Kaivalya Dixit, Sun Microsystems, Inc.

CPU INTENSIVE INTEGER SUITE (CINT2.0)

The new component level CPU intensive integer bench-
mark suite contains six benchmarks. The benchmarks rep-
resent the following application areas: circuit theory, LISP
interpreter, logic design, text compression, spreadsheet and
software development (GNU compiler).

008.espresso

008.espresso is a tool for the generation and optimization
of Programmable Logic Arrays (PLAs). It characterizes work
done in the EDA market and logic-simulation and routing-
algorithm areas. The elapsed time to run a set of four dif-
ferent input models characterizes espresso performance.
The EECS department of the University of California at
Berkeley distributes espresso through the Industrial Liaison
Program. espresso is an integer benchmark writteninC. Itis
a relatively small program that manipulates arrays in loops.
This program exercises storage allocation in computing the
PLAs and is sensitive to cache size.

022.1

022.liisaLISPinterpreterwritteninC. Itisa CPUintensive
integer benchmark. The performance is measured by the
time li takes to solve the famous nine queens problem. This
benchmark was originally developed by David Michae! Betz
and is based on XLISP 1.6. XLISP is a small implementation
of LISP with object-oriented programming. The backtracking
algorithm is recursive and poses a challenge for register
window architectures.

023.eqntott

023.eqntott is a CPU intensive integer benchmark written
in C. The benchmark translates a logical representation of a
Boolean equation to a truth table. The original source is from
the Industrial Liaison Program of the University of California
at Berkeley. The primary computation performed is a sort
operation. The program fits comfortably in the instruction
cache of most machines but the large data size may cause
data cache misses in some machines.

026.compress

026.compress is an application that reduces the size of
files using adaptive Lempel-Ziv coding. The SPEC version
compresses and uncompresses a 1 MB file 20 times. Itis a
CPU intensive C benchmark that performs some I/O.

The amount of compression obtained depends onthe size
of the input, the number of bits per code, and the distribution

18

of common substrings. Typically, text such as source code
or English is reduced by 50-60%. Compression is generally
much better than that achieved by Huffman coding.

072.sc

The benchmark was originally developed by James
Gosling. 072.sc is written in the C language and mainly
performs integer computations.

072.sc is a spreadsheet benchmark. 072.sc performs
standard operations expected of a spreadsheet: cursor
movements, data entry, data movements, file handling, row
and column operations, operations on ranges, and numeric
expressions and evaluations. There are three input models
that calculate in automatic mode:

« Budgets,
» SPECmarks,
* Fifteen-year amortization schedules.

All output is directed to a file to alleviate problems with
outputting to different size windows. An efficient “curses”
package should improve the performance on this bench-
mark.

085.gcc

085.gcc is GNU C compiler version 1.35. The original
source came from Richard Staliman of Free Software Foun-
dation. itis a CPU intensive C benchmark that spends about
10% of its time in 1/0 operations and thus is also an excellent
system level benchmark. This benchmark characterizes
work done in a workstation-based software engineering
environment. The performance is sensitive to cache size and
speed of the I/O device. 085.gcc shows high cache misses.
The benchmark measures the time it takes for the GNU C
compilerto convert a number of its preprocessed source files
into optimized Sun-3 assembly language (.s files) output. The
085.gcc benchmark compiles 76 input files.

CPU INTENSIVE FLOATING POINT SUITE (CFP2.0)

The new component level CPU intensive floating point
benchmark suite contains 14 benchmarks. The benchmarks
represent the following application areas: circuit design,
Monte Carlo simulation, quantum chemistry, optics, robotics,
quantum physics, astrophysics, and other scientific and
enginering problems. The suite contains two kernel bench-
marks.



December 1991

Volume 3, lssue 4

SPEC Newsletter

/

013.spice2g6

013.spice2g6 is an analog circuit simulation tool. It was
developed by the IC group of the Electronics Research
Laboratory and the EECS department of the University of
California at Berkeley. Itis written mostly in FORTRAN. The
UNIX interface of the program is written in C. spice2g6é isa
CPU intensive floating point (double precision) application. It
is a real application heavily used in the EDA markets. ltisa
large program that runs five copies of the grey code circuit.
The data accesses cause highcache misses. Morethan 80%
of assignments are memory to memory transfer.

015.doduc

015.doduc is a Monte Carlo simulation of the time evolu-
tion of athermo-hydraulical model (“hydrocode”) for anuclear
reactor's component. It uses fioating point numbers with 64-
bit precision. The benchmark was developed by Nhuan
Doduc. This is a synthetic benchmark that represents ECAD
and high-energy physics applications. doduc is a non-
vectorizable FORTRAN benchmark. It is a large kernel
extracted from the original program and is popular in the
scientific community. It has little VO, abundance of short
branches, loops, and executes code spread over many
subroutines. -

034.mdljdp2

034.mdljdp2 was developed by Steve Thompson atCormnell
University. It is a double precision FORTRAN benchmark
that represents quantum chemistry applications.

This program solves the equations of motion for a model
of 500 atoms interacting through the idealized Lennard-
Jones potential. This would be a typical system used to
model the structure of (say) liquid argon. At each time step
in the calculation, the position and velocity of each particle in
the model system are used to calculate the configurational
energy and pressure through the equations of statistical
mechanics. These properties can be directly compared with
experimental measurements, which gives some idea of the
quality of the interatomic potential used (Lennard-Jones in
this case).

The density and temperature for the model is supplied
through an input file. One difficulty of comparing theoretical
calculations with experimental measurements is the uncer-
tainty in the interatomic potentials, which in general are not
known for real systems. However, molecular dynamics
calculations provide essentially exact results for a given
mode! interatomic potential, and so provide a source of
experimental data with which theory canbe compared free of
uncertainties in the potential.

039.wave5
The original source for this benchmark came from Los
Alamos National Labs.

039.wave5 is a large FORTRAN scientific benchmark with
single precision floating point arithmetic. Atwo-dimensional,
relativistic, electromagnetic particle-in-cell simulation code
used to study various plasma phenomena. WAVES solves
Maxwell's equations and particle equations of motion on a
cartesian mesh with a variety of field and particle boundary
conditions. The benchmark problem involves 500,000 par-
ticles on 50,000 grid points for 5 time steps.

Changes for SPEC include:

« Scaled down from 20 to 5 time steps.

« Initialized some uninitialized (assumed to be zero)
values. _

. Disabled some code paths not used in the benchmark.

- Fixed some inconsistent common blocks.

. Normalizedthe code to prevent floating point exceptions
in routine VSLV1P.

. Eliminated internal calculation of elapsed time (to permit
SPEC’s mechanical verification).

047 tomcatv

047.tomcatv is a highly (90 - 98 %) vectorizable program
forthe generation of two-dimensional boundary-fitted coordi-
nate systems around general geometric domains such as
airfoils, cars, etc. It is based on the method introduced by
Thompson in 1974 which uses two Poisson equations to
produce a mesh which adapts to the physical region of
interest. The transformed non-linear equations are replaced
by afinite difference approximation, and the resulting system
is solved using successive line overrelaxation. The program
is floating point intensive. The original FORTRAN source is
from Dr. Wolfgang Gentzsch. This benchmark favors super-
scalar and vector processors. It causes high data cache
misses on several platforms.

048.ora
048.ora is a CPU intensive double precision floating point
scientific FORTRAN program.

048.ora traces rays through an optical system composed
of spherical and plane surfaces. Double precision is neces-
sary on computers with 32 bit word length. Single precision
is adequate on computers with 48 bit or greater word length.
The SPEC benchmark will execute in double precision mode.

Optical Research Associates (ORA) sanitized a version of
their proprietary geometric ray tracing benchmark.

The following modifications were made by SPEC:

« Internal timing commented out.

« lteration count increased.

« Checksum modified to account for higher iteration count.
« Checksum validation test added.

« “Double Precision” changed to REAL"8 to avoid

19



SPEC Newsletter Volume 3, Issue 4 December 1991

problems on 64 bit machines.
* All constants were labeled COMMON in separate
files.

052.alvinn
The original source came from D. A. Pomerleau. ltis a
CPU intensive single precision robotic application C

program.

This program trains a neural network called ALVINN
(Autonomous Land Vehicle In a Neural Network) using back
propagation. ALVINN is designed to take as input sensory
data from a video camera and a laser range finder and give
as output the direction for a vehicle to travel in order to stay
on the road.

The 1220 input units comprise the two input retinas, one
from a video camera and one from a laser range finder. The
35 output units are a linear representation of the direction in
which the network thinks the vehicle should travel. The
network is fully connected and has 30 hidden units.

The file in_pats.txt contains 30 road scenes as inputto the
network and the file out_pats.ixt contains the correct travel
direction vectors for each of the scenes.

056.ear

The original source came from Apple. Thisis a single pre-
cision floating point intensive C benchmark. It makes exten-
sive use of complex FFTs and other library functions. The
program creates a 1 MB output data file.

This program simulates the human ear. The program
takes as input a sound file (in a number of different file
formats) and produces eithera cochleagramor acorrelagram.
A cochleagram is a representation that roughly corresponds
to spectral energy as a function of time. A correlagram s our
implementation of Licklider's duplex model of pitch percep-
tion. A correlagram shows the short time autocorrelation for
each time slice of each cochlear channel. The result is a two
dimensional movie.

SPEC has modified the program to include validation of
results and “filters” suggested by Maicolm Slaney. All ma-
chine-specific references (e.g. Cray) were removed.

077.mdljsp2

This benchmark was developed by Steve Thompson at
Cornell University. Itis a single precision FORTRAN bench-
mark that represents Quantum Chemistry applications.

This program solves the equations of motion for a model
of 500 atoms interacting through the idealized Lennard-
Jones potential. This would be a typical system used to
model the structure of, say, liquid argon. At each time step

20

in the calculation, the position and velocity of each particlein
the model system are used to calculate the configurational
energy and pressure through the equations of statistical
mechanics. These properties can be directly compared with
experimental measurements, which gives some idea of the
quality of the interatomic potential used (Lennard-Jones in
this case).

The density and temperature for the model is supplied
through an input file. One difficulty of comparing theoretical
calculations with experimental measurements is the uncer-
tainty in the interatomic potentials, which in general are not
known for real systems. However, molecular dynamics
calculations provide essentially exact results for a given
model interatomic potential, and so provide a source of
experimental data with which theory canbe compared free of
uncertainties in the potential.

078.swm256

078.swm256 is a FORTRAN scientific benchmark with
single precision floating point arithmetic. The original source
came from Paul Swarztrauber of the National Center For
Atmospheric Research (NCAR).

The program solves the systemof shallow water equations
using finite difference approximations on a 256x256 grid.

swm256 was modified for SPEC as follows:

* Internal calculation of MFLOPs eliminated (to
permit SPEC mechanical verification of output).

* Primary benchmark metric is no longer MFLOPs but
rather elapsed time for the program to complete.

* Removed multitasking directives (considered a perfor-
mance enhancement/optimization by SPEC).

+ Removed the writing out of initial matrix values and
replaced the writing out of the final values with a
checksumtest. This was done to facilitate mechanical
verification of results and to ensure that all computed
results were subsequently “used.”

 Changed the number of iterations and output printing
policy to enlarge run time and reduce interim results
printout.

The benchmark spends about 48% of its execution in the
subroutine calc2.

089.su2cor

The original source came from B. Bunk, University of
Wuppertal (Germany). It is a vectorizable FORTRAN
program with double precision computation in quantum
physics.

In this application program from the area of quantum
physics, masses of elementary particles are computed in the



Volume 3, issue 4

SPEC Newsletter

December 1991

tramework of the Quark-Gluon theory. The data are com-
puted with a Monte Carlo method taken over from statistical
mechanics. The configurationis generated by the warm bath
method.

Most of the benchmark’s code is highly vectorizable. The
following values refer to a run with 75 configurations gen-
erated.

. Vectorization effect (factor) 15.0
« Vectorization degree 98.5 %

The benchmark was modified for SPEC as follows:

« Internal timing removed.
» Detailed output suppressed.
+ Validation added.

090.hydro2d

The original source came from Dr. Koessl, Max-Planck-
Insitutfur Astrophysik, Garching (Germany). itisavectorizable
FORTRAN programwith double precision floating point com-
putations. In this application program from the area of

astrophysics, hydrodynamical Navier Stokes equations are
solved to compute galactical jets.

Almost all of the benchmark’s code is vectorizable. The
following values refer to a run with 200 time steps.

- Vectorization effect (factor) 8.8
« Vectorization degree 99.5 %

093.nasa7

The original source came from David H. Bailey and John
T. Barton, NASA, AMES. A complete description of nasa7
can be found in NASA Technical Memorandum 86711, “The
NAS Kernel Benchmark Program” by David H. Bailey and
John T. Barton. It is a FORTRAN program with double
precision computation in applications frequently used by
NASA.

The new benchmark reads the parameters from an input
file to eliminate the constant propagation problem. Addition-
ally, the original source file was split (with fsplit) into separate
subroutines and cputime.c was added. The new output file
contains the performance data for seven kernels which can
be used to understand and improve the performance of
individual kernels.

The seven kemnels are:

« MATMUL - Matrix muttiply operation.

« CFFT2d - Complex radix 2 FFT on 2D array.

« CHOLSKY - Cholesky decomposition in paraliel on a
set of input matrices.

. BTRIX - Block tridiagonal matrix solution along one
dimension of a four dimensional array.

« GMTRY - Sets up arrays for a vortex method solution

- and performs Gaussian elimination on the resulting
arrays.

. EMIT - Creates new vortices according to certain
boundary conditions.

« VPENTA - Inverts 3 matrix pentadiagonals in a highly
paraliel fashion.

094.tpppp
094.fpppp is a double precision floating point FORTRAN

benchmark. It is a quantum chemistry benchmark which
measures performance on one style of computation (two
electron integral derivative) which occurs in the Gaussian
series of programs. It is difficult to vectorize because it
contains very large basic blocks. The input file to 042.fpppp
was modified and the source code remains unchanged.
094.fpppp solves the16 electron problem. The amount of
computation is proportional to the fourth power of the number
of atoms.

CREDITS AND CAVEATS

Most of the information is plagiarized fromthe benchmark
descriptions provided by the SPEC project leaders. Iwantto
thank Jeff Reilly (Intel) and Walter Bays (Sun Microsystems,
Inc.) for editing.

Kaivalya Dixit is the SPEC president and an engineering
program manager for Sun Microsystems, Inc., of Mountain
View, California.

21




