
Lecture 10, Processor Patterns CS250, UC Berkeley, Fall 2012

CS250 VLSI Systems Design
Lecture 10: Patterns for Processing Units and

Communication Links

John Wawrzynek, Jonathan Bachrach,
with

Krste Asanovic, John Lazzaro
and

Rimas Avizienis (TA)

UC Berkeley
Fall 2012

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

Unit-Transaction Level (UTL)

2

A UTL design’s functionality is specified as sequences of
atomic transactions performed at each unit, affecting only
local state and I/O of unit

i.e., serializable: can reach any legal state by single-stepping
entire system, one transaction at a time
High-level UTL spec admits various mappings into RTL with
various cycle timings and overlap of transactions’ executions

Unit

Unit UnitMemory

Network

Unit

Unit
T1

T2

T3

T4

T5

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

Transactional Specification of Unit

Each transaction has a combinational guard function defined over local state
and state of I/O indicating when it can fire

e.g., only fire when head of input queue present and of certain type
Transaction mutates local state and performs I/O when it fires
Scheduler is combinational function that picks next ready transaction to fire

3

Architectural
State

Trans 1Trans 1Trans 1Trans 1TransactionScheduler

Network

Memory

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

Architectural State
The architectural state of a unit is that which is visible
from outside the unit through I/O operations

i.e., architectural state is part of the spec
(this is the target for “black-box” testing)

When a unit is refined into RTL, there will usually be
additional microarchitectural state that is not visible from
outside

Intra-transaction sequencing logic
Pipeline registers
Internal caches and/or buffers
(this is the target for “white-box” testing)

4

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

UTL Example: Route Lookup

Transactions in decreasing scheduler priority
Table_Write (request on table access queue)

– Writes a given 12-bit value to a given 12-bit address

Table_Read (request on table access queue)
– Reads a 12-bit value given a 12-bit address, puts response on table reply queue

Route (request on packet input queue)
– Looks up header in table and places routed packet on correct output queue

This level of detail is all the information we really need to understand what the
unit is supposed to do! Everything else is implementation.

5

Packet Input

Packet
Output
QueuesLookup Table

Table Access
Table Replies

Table_Write

Table_Read

Route

Scheduler

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

Refining Route Lookup to RTL

The reorder buffer, the trie lookup pipeline’s registers, and
any control state are microarchitectural state that should not
affect function as viewed from outside

Implementation must ensure atomicity of UTL transactions:
– Reorder buffer ensures packets flow through unit in order
– Must also ensure table write doesn’t appear to happen in middle of packet lookup, e.g., wait

for pipeline to drain before performing write

6

Packet Input

Packet
Output
Queues

Lookup RAM

Table Access
Table Replies

Reorder Buffer

Trie Lookup Pipeline

Control

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

System Design Goal: Rate Balancing

System performance limited by application requirements,
on-chip performance, off-chip I/O, or power/energy

Want to balance throughput of all units (processing,
memory, networks) so none too fast or too slow

7

On-Chip
Memory

Network

Off-Chip
Memory

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

Rate-Balancing Patterns
To make unit faster, use parallelism

Unrolling (for processing units)
Banking (for memories)
Multiporting (for memories)
Widen links (for networks)
I.e., Use more resources by expanding in space, shrinking in time

To make unit slower, use time-multiplexing
Replace dedicated links with a shared bus (for networks)
Replace dedicated memories with a common memory
Replace multiport memory with multiple cycles on single port
Multithread computations onto a common pipeline
Schedule a dataflow graph onto a single ALU
I.e., Use less resources by shrinking in space, expanding in time

8

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

Stateless Stream Unit Unrolling
(Stream is an ordered sequence)

Problem: A stateless unit processing a single input stream of
requests has insufficient throughput.

Solution: Replicate the unit and stripe requests across the
parallel units. Aggregate the results from the units to form a
response stream.

Applicability: Stream unit does not communicate values
between independent requests.

Consequences: Requires additional hardware for replicated
units, plus networks to route requests and collect responses.
Latency and energy for each individual request increases due to
additional interconnect cost.

9

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

Stateless Stream Unit Unrolling

10

C
ol

le
ct

D
is

tr
ib

ut
e

T1 T2 T3 T1T4

Time

T1

T2

T3

T4

Time

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

Variable-Latency Stateless Stream Unit Unrolling
Problem: A stateless stream unit processing a single input stream
of requests has insufficient throughput, and each request takes a
variable amount of time to process.

Solution: Replicate the unit. Allocate space in output reorder
buffer in stream order, then dispatch request to next available unit.
Unit writes result to allocated slot in output reorder buffer when
completed (possibly out-of-order), but results can only be removed
in stream order.

Applicability: Stream unit does not communicate values
between independent requests.

Consequences: Additional hardware for replicated units plus
added scheduler, buffer, and interconnects. Need scheduler to find
next free unit and possibly an arbiter for reorder buffer write
ports. Latency and energy for each individual request increases due
to additional buffers and interconnect.

11

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns 12

Variable-Latency Stateless Stream Unit Unrolling

A
rb

ite
r

D
is

pa
tc

h

Sc
he

du
le

r

Reorder
Buffer

T1 T2 T3 T1T4

Time

T1

T2

T3

T4

Time

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

Time Multiplexing

Problem: Too much hardware used by several units processing
independent transactions.

Solution: Provide only a single unit and time-multiplex hardware
within unit to process independent transactions.

Applicability: Original units have similar functionality and
required throughput is low.

Consequences: Combined unit has to provide superset of
functionality of original units. Combined unit has to provide
architectural state for all architectural state in original units
(microarchitectural state, such as pipeline registers, can be shared).
Control logic has to arbitrate usage of shared resources among
independent transactions, and provide any performance guarantees.

13

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

Time Multiplexing

14

+A

*B

+
*

C

*

+

A

B

C

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

Other Forms of Rate Balancing
Increase/reduce voltage

Trade dynamic power for performance

Increase/reduce L, Vt, Tox, etc.
Trade transistor leakage power for performance

15

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

Processing Unit Design
Patterns

16

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

Control+Datapath
Problem: Arithmetic operations within transaction require large
functional units and memories connected by wide buses.
Sequencing of operations within transaction is complex.

Solution: Split processing unit into 1) datapath,which contains
functional units, data memories, and their interconnect, and 2)
control, which contains all sequencing logic.

Applicability: Where there is a clear divide between control
logic and data processing logic, with relatively few signals crossing
this divide, and mostly from control to datapath not vice versa.

Consequences: Most design errors are confined to the control
portion. Same datapath design can perform many different
transactions by changing control sequencing. Paths between control
and datapath, particularly from datapath back to control, are often
timing critical.

17

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

Control+Datapath

18

RAM

Datapath

Control

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

Controller Patterns
For synchronous control of local datapath
State Machine Controller

control lines generated by state machine
Microcoded Controller

single-cycle datapath, control lines in ROM/RAM
In-Order Pipeline Controller

control pipelined datapath, dynamic interaction between stages
Out-of-Order Pipeline Controller

operations within a control stream might be reordered
internally

Threaded Pipeline Controller
multiple control streams, one execution pipeline

19

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

Control Decomposition
Can divide control functions into three categories:

20

Transaction
Scheduling

Transaction
Sequencing

Pipeline Control

Pick next transaction to
be executed

Sequence operations
within transaction

Control execution of operations
on pipelined datapath

To datapath From datapath

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

State Machine Controller
Problem: Control for a simple unit that performs a single
transaction at a time.

Solution: Construct state machine with a common initial state to
select next transaction, and a separate path for each transaction to
sequence operations for that transaction.

Applicability: Where datapath is not highly pipelined and where
unit only executes one non-overlapping transaction at a time.
Combinational control logic can expand dramatically as number of
states increases, so limited to less pipelined and less concurrent
units.

Consequences: State machine can be more compact and faster
than a microcode controller for small state machines. Changes in
unit functionality can cause large changes in size/speed of state
machine.

21

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

State Machine Controller

22

S

T1A

T1B

T1C

T2A

T2B

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

Microcoded Controller
Problem: Control for a complex unit that performs a single
transaction at a time.

Solution: Encode control lines in a ROM structure with a small
state machine to sequence through locations in ROM. Microcode
dispatch function selects next transaction to execute, and each
transaction executed by sequence in microcode ROM. Can also use
RAM structure to allow post-fabrication modifications to control.

Applicability: Where unit only executes one non-overlapping
transaction at a time, but where control is complex. Particularly
useful in technology where ROM bits are significantly cheaper than
logic gates.

Consequences: Microcode easily modified to make changes in
unit functionality. Unit cycle time can be limited by critical path
from ROM readout to ROM address input (can use pipelined
microcode engine to speed throughput inbetween control hazards).

23

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

Microcoded Controller

24

µPC
Logic

µ
P
C µCode ROM

+1

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

In-Order Pipeline Controller
Problem: Control for a complex pipelined unit that can overlap execution
of multiple transactions, and multiple operations within one transaction.

Solution: Generate control signals for each stage of pipeline using control
state pipelined along with data state. Use dynamic scoreboard (part of which
may be the pipelined control state) to track operations in flight in pipeline.
Next operation can only enter pipeline when scoreboard indicates this
would not create a pipelining hazard (structural, data, or control).

Applicability: Where unit’s datapath is pipelined and either sequence of
transactions or sequence of operations within a transaction is dynamically
determined by input data. Where in-order processing is required, or
sufficient for performance goals.

Consequences: The datapath design mandates the hazards generated by
an executing operation, and can cause large growth in scoreboard
complexity and reduction in performance unless hazards on common
sequences are avoided.

25

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

In-Order Pipeline Controller

26

Select next xaction
or next op in

current xaction

Scoreboard

Issue?

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

Out-of-Order Processing Unit
When in-order gives insufficient throughput, buffer
operations and issue out-of-order with respect to
hazards.

27

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

Threaded Processing Unit
Multiplex multiple transaction streams onto single
hardware unit.

One specific implementation of time-multiplexing.

28

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

Taxonomy of Control Strategies
Increasing levels of control complexity build on each other.

29

Transaction
Scheduling

Transaction
Sequencing

Pipeline Control

To datapath From datapath

SM µCode In-Order OoO Threaded

Next state
after idle

state

Dispatch on
transaction

state to
µcode
address

Initialize current
transaction

state

Initialize
current

transaction
state

Interleave
transactions

from multiple
units

State
transitions

Step through
µcode

Sequence
through

transaction
states (either

FSM or uCode)

same as In-
Order

Same as In-
Order, except

multiple
simultaneous

xactions
expanded

N/A N/A

Control state
pipelined along

with data.
Scoreboard

controls issue
of next in-order

operation

Control state
pipelined
along with
data. Issue

buffer
executes
operation

out-of-order

Control state
pipelined
along with
data. Issue

next
operation
from ready

xaction.

CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

Skid Buffering

Consider non-blocking cache implemented as a 3-stage pipeline:
(scheduler, tag access, data access)

CPU Load/Store not admitted into pipeline unless miss tag, reply
queue, and victim buffer available in case of miss

Hit/miss determined at end of Tags stage, 2nd miss can enter pipeline

Solutions?
– Could only allow one load/store every two cycles => low throughput
– Skid buffering: Add additional victim buffer, miss tags, and replay queues to

complete following transaction if miss. Stall scheduler whenever there is not
enough space for two misses.

Sched. Tags Data

Sched. Tags Data

Sched. Tags Data

Miss #1

Miss #2

Stop further loads/stores

30

