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Unit-Transaction Level (UTL)
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A UTL design’s functionality is specified as sequences of 
atomic transactions performed at each unit, affecting only 
local state and I/O of unit

i.e., serializable: can reach any legal state by single-stepping 
entire system, one transaction at a time
High-level UTL spec admits various mappings into RTL with 
various cycle timings and overlap of transactions’ executions
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Transactional Specification of Unit

Each transaction has a combinational guard function defined over local state 
and state of I/O indicating when it can fire

e.g., only fire when head of input queue present and of certain type
Transaction mutates local state and performs I/O when it fires
Scheduler is combinational function that picks next ready transaction to fire
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Architectural State
The architectural state of a unit is that which is visible 
from outside the unit through I/O operations

i.e., architectural state is part of the spec
(this is the target for “black-box” testing)

When a unit is refined into RTL, there will usually be 
additional microarchitectural state that is not visible from 
outside

Intra-transaction sequencing logic
Pipeline registers
Internal caches and/or buffers
(this is the target for “white-box” testing)
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UTL Example: Route Lookup

Transactions in decreasing scheduler priority
Table_Write (request on table access queue)

– Writes a given 12-bit value to a given 12-bit address

Table_Read (request on table access queue)
– Reads a 12-bit value given a 12-bit address, puts response on table reply queue

Route (request on packet input queue)
– Looks up header in table and places routed packet on correct output queue

This level of detail is all the information we really need to understand what the 
unit is supposed to do!  Everything else is implementation.
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Refining Route Lookup to RTL

The reorder buffer, the trie lookup pipeline’s registers, and 
any control state are microarchitectural state that should not 
affect function as viewed from outside

Implementation must ensure atomicity of UTL transactions:
– Reorder buffer ensures packets flow through unit in order
– Must also ensure table write doesn’t appear to happen in middle of packet lookup, e.g., wait 

for pipeline to drain before performing write
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System Design Goal: Rate Balancing

System performance limited by application requirements, 
on-chip performance, off-chip I/O, or power/energy 

Want to balance throughput of all units (processing, 
memory, networks) so none too fast or too slow
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Rate-Balancing Patterns
To make unit faster, use parallelism

Unrolling (for processing units)
Banking (for memories)
Multiporting (for memories)
Widen links (for networks)
I.e., Use more resources by expanding in space, shrinking in time

To make unit slower, use time-multiplexing
Replace dedicated links with a shared bus (for networks)
Replace dedicated memories with a common memory
Replace multiport memory with multiple cycles on single port
Multithread computations onto a common pipeline
Schedule a dataflow graph onto a single ALU
I.e., Use less resources by shrinking in space, expanding in time
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Stateless Stream Unit Unrolling
(Stream is an ordered sequence)

Problem: A stateless unit processing a single input stream of 
requests has insufficient throughput.

Solution: Replicate the unit and stripe requests across the 
parallel units.  Aggregate the results from the units to form a 
response stream.

Applicability: Stream unit does not communicate values 
between independent requests.

Consequences: Requires additional hardware for replicated 
units, plus networks to route requests and collect responses.  
Latency and energy for each individual request increases due to 
additional interconnect cost.
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Stateless Stream Unit Unrolling

10

C
ol

le
ct

D
is

tr
ib

ut
e

T1 T2 T3 T1T4

Time

T1

T2

T3

T4

Time



CS250, UC Berkeley, Fall 2012Lecture 10, Processor Patterns

Variable-Latency Stateless Stream Unit Unrolling
Problem: A stateless stream unit processing a single input stream 
of requests has insufficient throughput, and each request takes a 
variable amount of time to process.

Solution: Replicate the unit.  Allocate space in output reorder 
buffer in stream order, then dispatch request to next available unit. 
Unit writes result to allocated slot in output reorder buffer when 
completed (possibly out-of-order), but results can only be removed 
in stream order.

Applicability: Stream unit does not communicate values 
between independent requests.

Consequences: Additional hardware for replicated units plus 
added scheduler, buffer, and interconnects.  Need scheduler to find 
next free unit and possibly an arbiter for reorder buffer write 
ports. Latency and energy for each individual request increases due 
to additional buffers and interconnect.
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Variable-Latency Stateless Stream Unit Unrolling
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Time Multiplexing

Problem: Too much hardware used by several units processing 
independent transactions.

Solution: Provide only a single unit and time-multiplex hardware 
within unit to process independent transactions.

Applicability: Original units have similar functionality and 
required throughput is low.

Consequences: Combined unit has to provide superset of 
functionality of original units. Combined unit has to provide 
architectural state for all architectural state in original units 
(microarchitectural state, such as pipeline registers, can be shared). 
Control logic has to arbitrate usage of shared resources among 
independent transactions, and provide any performance guarantees.
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Time Multiplexing
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Other Forms of Rate Balancing
Increase/reduce voltage

Trade dynamic power for performance

Increase/reduce L, Vt, Tox, etc.
Trade transistor leakage power for performance
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Processing Unit Design 
Patterns
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Control+Datapath
Problem: Arithmetic operations within transaction require large 
functional units and memories connected by wide buses.  
Sequencing of operations within transaction is complex.

Solution: Split processing unit into 1) datapath,which contains 
functional units, data memories, and their interconnect, and 2) 
control, which contains all sequencing logic.

Applicability: Where there is a clear divide between control 
logic and data processing logic, with relatively few signals crossing 
this divide, and mostly from control to datapath not vice versa.

Consequences: Most design errors are confined to the control 
portion. Same datapath design can perform many different 
transactions by changing control sequencing. Paths between control 
and datapath, particularly from datapath back to control, are often 
timing critical.
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Control+Datapath
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Controller Patterns
For synchronous control of local datapath
State Machine Controller

control lines generated by state machine
Microcoded Controller

single-cycle datapath, control lines in ROM/RAM
In-Order Pipeline Controller

control pipelined datapath, dynamic interaction between stages
Out-of-Order Pipeline Controller

operations within a control stream might be reordered 
internally

Threaded Pipeline Controller
multiple control streams, one execution pipeline
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Control Decomposition
Can divide control functions into three categories:
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State Machine Controller
Problem: Control for a simple unit that performs a single 
transaction at a time.

Solution: Construct state machine with a common initial state to 
select next transaction, and a separate path for each transaction to 
sequence operations for that transaction. 

Applicability: Where datapath is not highly pipelined and where 
unit only executes one non-overlapping transaction at a time. 
Combinational control logic can expand dramatically as number of 
states increases, so limited to less pipelined and less concurrent 
units.

Consequences: State machine can be more compact and faster 
than a microcode controller for small state machines.  Changes in 
unit functionality can cause large changes in size/speed of state 
machine.
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State Machine Controller
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Microcoded Controller
Problem: Control for a complex unit that performs a single 
transaction at a time.

Solution: Encode control lines in a ROM structure with a small 
state machine to sequence through locations in ROM. Microcode 
dispatch function selects next transaction to execute, and each 
transaction executed by sequence in microcode ROM. Can also use 
RAM structure to allow post-fabrication modifications to control.

Applicability: Where unit only executes one non-overlapping 
transaction at a time, but where control is complex.  Particularly 
useful in technology where ROM bits are significantly cheaper than 
logic gates.

Consequences: Microcode easily modified to make changes in 
unit functionality.  Unit cycle time can be limited by critical path 
from ROM readout to ROM address input (can use pipelined 
microcode engine to speed throughput inbetween control hazards).
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Microcoded Controller
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In-Order Pipeline Controller
Problem: Control for a complex pipelined unit that can overlap execution 
of multiple transactions, and multiple operations within one transaction.

Solution: Generate control signals for each stage of pipeline using control 
state pipelined along with data state.  Use dynamic scoreboard (part of which 
may be the pipelined control state) to track operations in flight in pipeline.  
Next operation can only enter pipeline when scoreboard indicates this 
would not create a pipelining hazard (structural, data, or control).  

Applicability: Where unit’s datapath is pipelined and either sequence of 
transactions or sequence of operations within a transaction is dynamically 
determined by input data.  Where in-order processing is required, or 
sufficient for performance goals.

Consequences: The datapath design mandates the hazards generated by 
an executing operation, and can cause large growth in scoreboard 
complexity and reduction in performance unless hazards on common 
sequences are avoided.
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In-Order Pipeline Controller
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Out-of-Order Processing Unit
When in-order gives insufficient throughput, buffer 
operations and issue out-of-order with respect to 
hazards.
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Threaded Processing Unit
Multiplex multiple transaction streams onto single 
hardware unit.

One specific implementation of time-multiplexing.
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Taxonomy of Control Strategies
Increasing levels of control complexity build on each other.
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Skid Buffering

Consider non-blocking cache implemented as a 3-stage pipeline: 
(scheduler, tag access, data access)

CPU Load/Store not admitted into pipeline unless miss tag, reply 
queue, and victim buffer available in case of miss

Hit/miss determined at end of Tags stage, 2nd miss can enter pipeline

Solutions?
– Could only allow one load/store every two cycles => low throughput
– Skid buffering: Add additional victim buffer, miss tags, and replay queues to 

complete following transaction if miss.  Stall scheduler whenever there is not 
enough space for two misses.

Sched. Tags Data

Sched. Tags Data

Sched. Tags Data

Miss #1

Miss #2

Stop further loads/stores
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