
RISC-V, Spike, and the Rocket Core

CS250 Laboratory 2 (Version 091713)
Written by Ben Keller

Overview

This lab will serve as an overview of several important technologies that have been developed by
graduate students in the Berkeley Architecture Group. The Berkeley architecture toolflow is built
around the RISC-V instruction set architecture (ISA), a new and improved RISC instruction set.
In this lab, you will write programs in C and assembly, compile them with riscv-gcc, and run
them with spike, the RISC-V ISA simulator. You will then run those same programs on the Rocket
core, a hardware implementation of the RISC-V ISA. Finally, you will modify the layout of the
Rocket core to improve its performance and reduce its energy consumption. These basic processor
design skills will come in handy when you drive your accelerators from the Rocket core in future
labs and the course project.

Deliverables

This lab is due Tuesday, September 24 at 2PM. The deliverables for this lab are:

• (a) C source code and assembly code checked into your git repo

• (b) Python scripts to parse simulation results and power reports

• (c) build results for DC, ICC, and Primetime

You are encouraged to discuss your design with others in the class, but you must write your own
code and turn in your own work.
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The RISC-V ISA

RISC-V (pronounced “risk-five”) is a new instruction set architecture (ISA) designed to support
computer architecture research and education. It was developed by the Berkeley Architecture Group
(now part of the ASPIRE Lab). RISC-V is a free, open ISA, and it is the fifth RISC instruction set
that has been developed at Berkeley. The base ISA was designed to be clean, simple, and suitable
for direct hardware implementation.

The base instructions of the RISC-V ISA are similar to those of other RISC instruction sets, such
as MIPS or OpenRISC. A summary of some of these 32-bit instructions is shown in the table below.
For more information about the RISC-V ISA, see www.riscv.org.

31 27 26 22 21 17 16 12 11 10 9 7 6 0

jump target opcode J-type
rd upper immediate opcode U-type
rd rs1 imm[11:7] imm[6:0] funct3 opcode I-type

imm[11:7] rs1 rs2 imm[6:0] funct3 opcode B-type
rd rs1 rs2 funct10 opcode R-type
rd rs1 rs2 rs3 funct5 opcode R4-type

imm25 1101011 J imm25
imm25 1101111 JAL imm25

imm12hi rs1 rs2 imm12lo 000 1100011 BEQ rs1,rs2,imm12
imm12hi rs1 rs2 imm12lo 001 1100011 BNE rs1,rs2,imm12
imm12hi rs1 rs2 imm12lo 100 1100011 BLT rs1,rs2,imm12
imm12hi rs1 rs2 imm12lo 101 1100011 BGE rs1,rs2,imm12

rd rs1 imm12 000 0000011 LB rd,rs1,imm12
rd rs1 imm12 001 0000011 LH rd,rs1,imm12
rd rs1 imm12 010 0000011 LW rd,rs1,imm12

imm12hi rs1 rs2 imm12lo 000 0100011 SB rs1,rs2,imm12
imm12hi rs1 rs2 imm12lo 001 0100011 SH rs1,rs2,imm12
imm12hi rs1 rs2 imm12lo 010 0100011 SW rs1,rs2,imm12

rd rs1 imm12 000 0010011 ADDI rd,rs1,imm12
rd rs1 000000 shamt 001 0010011 SLLI rd,rs1,shamt
rd rs1 imm12 010 0010011 SLTI rd,rs1,imm12
rd rs1 imm12 100 0010011 XORI rd,rs1,imm12
rd rs1 000000 shamt 101 0010011 SRLI rd,rs1,shamt
rd rs1 000001 shamt 101 0010011 SRAI rd,rs1,shamt
rd rs1 imm12 110 0010011 ORI rd,rs1,imm12
rd rs1 imm12 111 0010011 ANDI rd,rs1,imm12
rd rs1 rs2 0000000 000 0110011 ADD rd,rs1,rs2
rd rs1 rs2 1000000 000 0110011 SUB rd,rs1,rs2
rd rs1 rs2 0000000 001 0110011 SLL rd,rs1,rs2
rd rs1 rs2 0000000 010 0110011 SLT rd,rs1,rs2
rd rs1 rs2 0000000 011 0110011 SLTU rd,rs1,rs2
rd rs1 rs2 0000000 100 0110011 XOR rd,rs1,rs2
rd rs1 rs2 0000000 101 0110011 SRL rd,rs1,rs2
rd rs1 rs2 1000000 101 0110011 SRA rd,rs1,rs2
rd rs1 rs2 0000000 110 0110011 OR rd,rs1,rs2
rd rs1 rs2 0000000 111 0110011 AND rd,rs1,rs2
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RV32M Instruction Subset
31 27 26 22 21 17 16 12 11 10 9 7 6 0

rd rs1 rs2 0000001 000 0110011 MUL rd,rs1,rs2
rd rs1 rs2 0000001 001 0110011 MULH rd,rs1,rs2
rd rs1 rs2 0000001 010 0110011 MULHSU rd,rs1,rs2
rd rs1 rs2 0000001 011 0110011 MULHU rd,rs1,rs2
rd rs1 rs2 0000001 100 0110011 DIV rd,rs1,rs2
rd rs1 rs2 0000001 101 0110011 DIVU rd,rs1,rs2
rd rs1 rs2 0000001 110 0110011 REM rd,rs1,rs2
rd rs1 rs2 0000001 111 0110011 REMU rd,rs1,rs2

The RISC-V Tools

The RISC-V toolchain is a standard GNU cross compiler toolchain ported for RISC-V. You will
use riscv-gcc to compile, assemble, and link your source files. riscv-gcc behaves similarly to
the standard gcc, except that it produces binaries encoded in the RISC-V instruction set. These
compiled binaries can be run on spike, the RISC-V ISA simulator. They can also be used to
generate a hexadecimal list of machine code instructions that can be loaded into the instruction
memory of a simulated (or real) processor.

Figure 1 shows how the RISC-V tools fit into the VLSI flow described in Lab 1. Note that the
VLSI tools that perform synthesis and place-and-route are not shown.

RISC-V C Programming

Make sure that you have pulled the latest version of the lab template repository, and that you are
sourcing the course tools:

% source ~cs250/tools/cs250.bash_profile

Now you will compile your first RISC-V program. Assuming you have defined $LABROOT as the
base of the lab 2 directory, type:

% cd $LABROOT/c

Take a look at the source code of the provided “Hello world” program, hello.c. We will use
riscv-gcc to compile this program.

% riscv-gcc -c common/crt.S -o crt.o

% riscv-gcc -c hello.c -o hello.o

% riscv-gcc -T common/test.ld common/syscalls.c -lc hello.o -o hello.run

In the common directory, crt.S defines an important startup sequence, and syscalls.c contains
definitions of the standard libraries called in the program. The first two steps compile the source
files, and the final step links all of the sources into a single executable called hello.run.

Now we can simulate the compiled program with spike, which will simulate execution of the
RISC-V binary.
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Figure 1: A summary of the Lab 2 toolflow, with source files in green and program execution
outputs in blue.
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% spike hello.run

Check to make sure that the program behaves as expected.

In this same directory, create a C source file named test.c and write a new C program of your
choosing. You can write another simple program that prints text or performs simple arithmetic,
or you can kick the tires of the RISC-V toolchain with a more complicated program. Make sure to
include a comment that notes what your program does. Feel free to explore the common directory
to find other functions that may be of use to you.

Once you have written your C program, compile, link, and run your program using riscv-gcc and
spike.

We use other RISC-V tools to examine the assembly and machine code that was generated by the
compiler. In the c directory, type:

% riscv-objdump --disassemble-all hello.run > hello.dump

Open the hello.dump file that is generated. This file lists all of the instructions that make up the
“Hello world” program in human-readable assembly code. As you can see, even a simple C program
can compile to many hundreds of instructions!

We can also generate the machine code represented by the binary.

% elf2hex 16 16384 hello.run > hello.hex

Open the generated hello.hex file. It contains a hexadecimal encoding of the bits that make up
the binary executable. While this code is not human-readable, these types of files are loaded into
machine memory to execute binaries on a target machine.

Reference C Benchmarks

The process of compiling, linking, and executing C programs can be automated with Makefiles,
just as in Lab 1. The riscv-tests directory contains several C programs that can be compiled in
this way.

% cd $LABROOT/riscv-tests/benchmarks

% make

% make run-riscv

These programs are designed to be run on simulated processors for debugging and benchmarking
purposes. Accordingly, most of them print little information directly to the console unless there is
some error in execution. In this build setup, the outputs of the ISA simulator are printed to .out

files. Look at a few of the generated .out files and verify that they are empty and clear of errors.
You can also look through the generated .dump files to see the compiled assembly for the various
reference benchmarks.

RISC-V Assembly Programming

The RISC-V C compiler is a powerful programming tool, but, like any compiler, it introduces extra
layers of hierarchy and abstraction that can sometimes obstruct a clear understanding of precisely
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what instructions are being run. Sometimes, it is in our interest to avoid the C compiler and
write hand-coded RISC-V assembly instructions so that we can more easily predict exactly how a
program ought to behave.

Let’s take a look at some assembly source code.

% cd $LABROOT/assembly

The assembly program add.S was written to test the add instruction of the target environment.
(RISC-V source code files have the extension .S.) Compile and run the program:

% riscv-gcc -nostdlib -nostartfiles -Ip -Imacros/scalar \

% -T p/link.ld add.S -o add.run

% spike add.run

*** FAILED *** (tohost = 4)

Unfortunately, spike has indicated that something went wrong in the execution of the program.
This could indicate an issue with either the ISA simulator or the program itself. Since the ISA
simulator is reasonably robust, let’s open up the source code of add.S to see if we can figure out
why the test is failing.
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...

TEST_RR_OP( 2, add, 0x00000001, 0x00000000, 0x00000000 );

TEST_RR_OP( 3, add, 0x00000002, 0x00000001, 0x00000001 );

TEST_RR_OP( 4, add, 0x0000000a, 0x00000004, 0x00000007 );

TEST_RR_OP( 5, add, 0xffffffffffff8000, 0x0000000000000000, 0xffffffffffff8000 );

TEST_RR_OP( 6, add, 0xffffffff80000000, 0xffffffff80000000, 0x00000000 );

TEST_RR_OP( 7, add, 0xffffffff7fff8000, 0xffffffff80000000, 0xffffffffffff8000 );

...

TEST_PASSFAIL

...

The first thing you’ll notice about this assembly file is that it does not seem to contain any actual
assembly code! Instead, the assembly code has been organized into macros that are called by
add.S. These macros are somewhat similar to functions in their construction, but they are treated
differently by the compiler, which simply substitutes the assembly code associated with each macro
into the program in the designated order, filling in any variables with the arguments provided by
the macro call. The compiler is not performing any optimization on the provided assembly code,
nor is it exercising the stack as would be the case with a function call in C. Instead, these macros
are simply a bookkeeping convention, a way for assembly writers to organize their code and avoid
rewriting common sets of instructions.

We can see that add.s repeatedly passes arguments to a macro called TEST RR OP. This is a macro
written to test the correctness of any R-type instruction. Open the file test macros.h, located in
macros/scalar, and find the TEST RR OP macro.

...

#define TEST_RR_OP( testnum, inst, result, val1, val2 ) \

TEST_CASE( testnum, x3, result, \

li x1, val1; \

li x2, val2; \

inst x3, x1, x2; \

)

...

As you can see, most of what this macro does is load the specified values into registers $x1 and
$x2 and perform the specified R-type instruction on those two registers, storing the result in $x3.
The macro also calls another macro called TEST CASE that checks that the result computed by the
target and stored in $x3 matches the correct result provided in the macro argument result. If
TEST CASE detects a failed test, it stores the testnum in register $x28

At the end of the add.S program, a macro called TEST PASSFAIL is called. If you like, you can look
at this simple macro, also found in test macros.h. This macro checks to see whether any value
has been stored into $x28, and calls either RVTEST PASS or RVTEST FAIL accordingly. Let’s look at
these final two macros to see why our program is failing.

Open the file p/riscv test.h, and find the RVTEST PASS and RVTEST FAIL macro definitions.
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...

#define RVTEST_PASS \

fence; \

li x1, 1; \

mtpcr x1, cr30; \

1: b 1b; \

#define RVTEST_FAIL \

fence; \

beqz x28, 1f; \

sll x28, x28, 1; \

or x28, x28, 1; \

mtpcr x28, cr30; \

1: b 1b; \

...

While these macros may contain several unfamiliar instructions, we can still figure out what they
do. If RVTEST PASS is called, the value 1 is loaded into a special register called $cr30. If
RVTEST FAIL is called, the value stored in $x28 is loaded into $cr30. Recall that $x28 was
previously loaded with the testnum of any test that failed. Therefore, after one of these macros is
called, $cr30 either contains a 1 if all of the tests passed, or the number of the failed test if one of
them failed.

The mtpcr instruction is not found in the base RISC-V ISA. Instead, it is defined in a separate
supervisor-level ISA specification that also defines the role of $cr30 and other privileged control
registers. Documentation of the RISC-V Supervisor ISA is forthcoming on the RISC-V website.
For our purposes, $cr30 is known to spike as a special register that indicates the status of the
program. As soon as the register is written with a value other than 0 or 1, spike prints an error
message to the console and ends the program.

Because of our investigation, we know that our error message from executing add.run is the result
of a failure in the fourth test in the add program. Open add.S and fix the arithmetic error. Then
compile and run the program again and verify that it does not print an error message.

Writing Your Own RISC-V Assembly Macros

Now you will write some assembly of your own. Open the second provided assembly test file,
mytest.S. This file is structured similarly to add.S, but instead of calling the TEST RR OP macro,
it calls three new macros:

• TEST POW takes as arguments a base and an exponent and evaluates the base raised to that
exponent.

• TEST FIB takes as an argument an integer n and calculates the nth element in the Fibonacci
sequence. Note that the first and second elements in the Fibonacci sequence are both 1. That
is, if n = 1 or n = 2, your macro should calculate a result of 1.

• TEST GCD takes as arguments two integers and finds the greatest common divisor of those
integers.
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Each of these test macros finishes by writing testnum to $x28 and then calling RVTEST FAIL if the
calculated result does not match the provided answer.

Skeletons of these macros are provided in the file my macros.h. You should write assembly code
for each macro so that they operate as intended. These macros are excellent opportunities to write
functional programs with recursive calls if you are so inclined, but you are welcome to use whatever
programming approach you like. Note that these programs only need to operate on small, positive
integer inputs. Do not worry about zero, negative, or floating-point inputs, or about the possibility
of overflow.

Once you have written your macros, you should be able to compile and run mytest.S without
errors:

% riscv-gcc -nostdlib -nostartfiles -I. -Ip -Imacros/scalar \

% -T p/link.ld mytest.S -o mytest.run

% spike mytest.run

Note that the macro instantiations in mytest.S are each written to pass as provided. Be sure to
run some failing tests as well to ensure that your macro tests identify them. If your macros are
written correctly, spike should print an error message to the console identifying any failed tests.

Debugging Your Assembly Code

While running spike can correctly execute your program, it does not provide any debugging infor-
mation by default. Fortunately, it can also be run in a debug mode:

% spike -d mytest.run

In debug mode, you can step through the program one cycle at a time and observe the program
counter and the current instruction. You can also take advantage of several other debugging
features:

• r num: run for num cycles

• rs num: run for num cycles without printing debug information

• reg 0 regnum: print the value of register regnum

Type q to exit the simulator. You may also find it helpful to compare the debug output with the
program’s .dump file.

As you are debugging, please note that spike is not meant to be a cycle-accurate simulator of
the assembly code. When spike runs, memory operations “magically” resolve in a single cycle,
and branches are always evaluated without delay. The ISA simulator can evaluate the functional
correctness of programs, but it is not a good way to measure how long they will take to run. Such
cycle-accurate simulation requires a target hardware implementation such as the one that you will
compile later in the lab.
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Reference Assembly Tests

We can use Makefiles to automate the compilation and execution of assembly code.

% cd $LABROOT/riscv-tests/isa

% make

% make run

The many assembly tests in this directory are intended to ensure that any hardware RISC-V
implementation properly executes every instruction defined in the ISA. The somewhat verbose
naming convention for each test provides details about the test. For example, rv64ui-p-add tests
the 64-bit extension of the RISC-V instruction set in user mode with integer instructions in a
simulated physical test environment. While there are many other types of tests, we will focus on
tests with the designation rv64ui-p for the purposes of this lab.

Note that these tests will “pass silently” if successfully executed. Messages should only print to
the console if a test fails. As with the C benchmarks, the outputs of the ISA simulator are printed
to .out files. Look at a few of the generated .out files and verify that they are empty. You can
also look through the generated .dump files to see the assembly for the various reference tests.
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The RISC-V Rocket Core

The RISC-V ISA specification defines the desired behavior of a RISC-V processor, but until this
point in the lab, such a processor has been entirely theoretical. In this section, we introduce
the RISC-V Rocket core, a microarchitecture developed by the Berkeley Architecture group that
implements the 32-bit instruction format of the RISCV64 ISA .

Rocket is an in-order, single-issue scalar processor that includes a six-stage integer pipeline (see
Figure 2). It has a 31-entry, 64-bit register file and uses a scoreboard to detect data hazards
involving instructions with multi-cycle latencies. The processor has both a user and a supervisor
mode; an synchronous trap or external (asynchronous) interrupt can trigger a transition from user
to supervisor mode. A detailed graphical description of the Rocket microarchitecture can be seen
in Figure 4. Note that while several queues in the last stage reference a floating-point unit, the
version of Rocket used in CS250 does not have an FPU.

Figure 2: The Rocket pipeline.

The Rocket core contains a fast L1 instruction cache and L1 data cache. In the CS250 instantiation
of Rocket, these caches communicate through a simple bus to a simulated DRAM that acts as main
memory for the system (see Figure 3).
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Figure 3: The CS250 Rocket memory hierarchy.
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Versions of the Rocket core have been taped out into silicon in at least seven different implemen-
tations of the EOS and Raven research projects. In this lab, you will familiarize yourself with the
basics of the Rocket core so that you can take advantage of its brand-new accelerator interface later
in the course.

The Chisel C Emulator

As described in Lab 1, Chisel can generate a fast C emulator from the scala source files that is
handy for simulating and debugging hardware designs. Let’s make such an emulator for Rocket.

% cd $LABROOT/emulator

% make

This will compile a C emulator capable of cycle-accurate simulation of the Rocket core. If the
Rocket core is properly implemented, it ought to be able to execute RISC-V binaries identically
to the ISA simulator. The C emulator provides our first opportunity to test the correctness of the
implemented hardware.

Let’s run the assembly tests that you wrote on the Rocket core to see if Rocket can execute your
programs correctly. If you haven’t done so already, compile your mytest.S program and generate
a hex file. Then type:

% ./emulator +dramsim +max-cycles=30000000 +verbose \

% +loadmem=../assembly/mytest.hex none 2> output/mytest.out

This will run your program on the emulated processor. The dramsim argument includes the simu-
lated DRAM in the processor emulation. max-cycles sets a timeout constraint in case the program
hangs. The loadmem command allows the program data to be loaded into simulated memory before
the simulation begins. Without this command, numerous simulation cycles would be spent at the
beginning of each program loading data into memory.

Since the emulator was run in verbose mode, it prints debug information to the console each cycle,
including the value of the program counter and the type of instruction that was run. Take a look
at the generated mytest.out file to see the results for your program.

C: 0 [0] pc=[00000002000] W[r 0=0000000000000000] ...

C: 1 [0] pc=[00000002000] W[r 0=0000000000000000] ...

C: 2 [0] pc=[00000002000] W[r 0=0000000000000000] ...

C: 3 [0] pc=[00000002000] W[r 0=0000000000000000] ...

...

In Rocket, the program counter is always initialized to 0x2000, so our program starts there. You’ll
notice that the program counter remains at this address for many cycles before any instructions
are executed. This is because the memory system simulates a typical latency for DRAM accesses,
which are required to load instructions into the cache before the processor can begin executing the
program. Note the additional long pauses over the course of the program’s execution while the
processor stalls, waiting for the results of memory requests. This is the main (though not the only)
reason that simulations of programs run on the processor take many more simulated cycles than
those run on spike.
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Figure 4: The Rocket microarchitecture.
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Look through the file and observe the remainder of your program’s execution. If you’d like, you
can follow along in the dump file to note the various function calls. Scroll to the bottom of the file
and be sure that the test did not fail. (If the test passes the ISA simulator, there is no reason that
it should fail in the C emulator.)

Analyzing RISC-V Test Results

The primary purpose of the included tests and benchmarks is to verify the correctness of the RISC-
V hardware implementation. Let’s make sure that Rocket is working as intended for all of the
instructions in the ISA.

% cd $LABROOT/emulator

% make run-asm-tests

Note that this command will only run if you have already compiled the RISC-V tests as previously
described.

The RISC-V assembly tests are intended to check the functionality of each instruction individually.
You should already be familiar with the way in which these programs use the control register cr30
to signify correct operation. As noted previously, these tests only display any message if they fail;
if they pass, they should not print any additional information. Unfortunately, a failed test might
also not display any information (for example, if the test fails catastrophically, the program may
never reach the RVTEST FAIL portion of the program). It would be better to have some assurance
that each test actually reaches the ”PASS” state.

Write a Python script called check.py that parses the dump file of each test to identify the address
associated with the pass location. Your script should then parse the results of the C emulator and
verify that the test reaches that “pass address”. For example, the add.S test passes if the program
counter reaches 0x251c, according to its dump file:

...

000000000000251c <pass>:

251c: 0000012f fence

...

In the emulator’s logged output of the processor simulation, we see that the program counter
reaches address 0x251c near the end of program execution:

...

C: 1714 [1] pc=[0000000251c] W[r 0=0000000000000002] ... fence

...

So we know that the add test passed. Your Python script should automatically check all of the
RISC-V test results to ensure that they passed as well, and print a summary to the console. You
can find a list of the tests in the top-level Makefrag file.

Analyzing RISC-V Benchmark Results

The RISC-V benchmarks run more complicated programs than the simple assembly tests. They are
used to check for correct operation, but also to check the runtime of the processor when executing
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various programs of interest. First, run the benchmarks on the emulated Rocket core. (Again, they
must already be compiled.)

% make run-bmarks-test

You will notice that one of the RISC-V benchmarks does not pass simulation. The dgemm benchmark
performs a series of dense matrix multiplications on matrices storing floating point numbers. Since
the CS250 Rocket core does not contain a floating point unit, this benchmark will not run on the
processor, even though it successfully passed in ISA simulation.

Add to your Python script above so that it counts the number of cycles required to execute each
benchmark. When you’re finished, you should be able to run your script to analyze the correctness
of each test and the runtime of each benchmark.

Debugging with the Waveform Viewer

While we have provided you with a working processor for this lab, you will inevitably need to debug
complex hardware designs over the course of the semester. It is possible, as in Lab 1, to modify the
source code of the C emulator to print additional debug information for this purpose. However,
the emulator takes considerable time to recompile for large designs, so this may be impractical as a
quick debugging tool. Alternatively, you can build a C emulator that records the switching activity
of each node in the design and generates vcd files that can be converted and viewed as graphical
waveforms in DVE.

To do this, we will recompile a different version of the emulator:

% make emulator-debug

You can run all of the benchmarks and tests on the emulator with make run-debug. For our
purposes, let’s just run a single test:

% make output/rv64ui-p-add.vpd

The Makefile will use the new emulator to generate the vpd file. Open the generated file with DVE
and explore the waveforms of the various signals within the Rocket core. See if you can identify
the additions that are written into the test (see Figure 5), and the final determination that the test
passed.

In general, compiling and running the emulator to generate vpd files takes longer than running the
standard emulator, so take this step only when necessary for debugging.
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Figure 5: The Rocket core successfully adds 1 and 1.

Rocket and the VLSI Flow

Despite the vastly increased complexity of the design, the VLSI flow for compiling the Rocket core
from RTL to GDS is similar to the flow you learned in Lab 1. You will push the Rocket core all
the way through the flow, checking functional correctness after each step, and then use Primetime
PX to accurately measure the power consumption of the system.

Getting Oriented

From your top-level lab 2 directory, go to vlsi/build and take a look at the build infrastructure.
Open the Makefrag in this directory.

...

UCB_STDCELLS = synopsys-32nm/typical_rvt

clock_period = 1.25

clock_uncertainty = 0.04

vcs_clock_period = 0$(shell echo "scale=4; ${clock_period}*0.5" | bc)

dc_clock_period = 0$(shell echo "scale=4; ${clock_period}*1.0" | bc)

...

Makefrags provide additional information so that Makefiles can complete their tasks. This Makefrag
provides (among many other things) the target clock period for the Synopsys tools. Note the current
default of 1.25ns.

Close the Makefrag and generate the top-level Verilog from the Chisel source.

% cd $LABROOT/vlsi/build/vcs-sim-rtl

% make
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This will build the Verilog for Rocket and create a VCS simv file from which the Verilog can be
simulated. Now run the assembly tests and benchmarks on the simulated Verilog.

% make run-asm-tests

% make run-bmarks-test

Check the .out files for any errors. Use your Python script from the previous section to ensure that
the processor passes each assembly test and that the procesor runtime of each benchmark is the
same number of cycles as it was in the C simulator.

The VCS simulator for the processor does not generate vpd files by default due to the additional
runtime penalty. The Makefiles are configured to produce these files upon request:

% make simv-debug

% make run-asm-tests-debug

% make run-bmarks-test-debug

Building the Chip

Now that we’ve verified our RTL, let’s synthesize our design.

% cd $LABROOT/vlsi/build/dc-syn

% make

This will take some time to run. Note that the folder that contains the DC build includes the
clock period in its name. This can be useful when tweaking the clock period target provided to the
synthesis and comparing the results.

Once synthesis finishes, look briefly through the generated reports. In particular, take a look at the
QOR report and verify that the design meets timing by checking whether the critical path of the
clock named clk is near to the target period. (A small negative slack of a few tens of picoseconds
is OK, and perhaps even ideal; it indicates that Design Compiler has exerted some optimization
effort to bring the clock close to the minimum achievable clock period.)

After synthesis, run post-synthesis gate-level simulation in the vcs-sim-gl-syn directory. Note
that the C simulator does not print as much debug information as in previous simulation stages,
so you will not be able to verify the correct execution of the RISC-V tests by analyzing the .out

files. (A message should still print to the console if any of the tests fails.) You can still use your
Python script to measure the runtime of the RISC-V benchmarks, however.

Next, we’ll move on to place-and-route.

% cd $LABROOT/vlsi/build/icc-par

% make

This process will take quite some time for the Rocket core, perhaps an hour or more. Once it has
finished, look through the generated reports on area, timing, and power, and make a note of any
significant changes as compared to the synthesis results. To get a better picture of the design, open
the design in the ICC Compiler graphical view.
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Figure 6: Click the folder in the top right to select the design.

% cd current-icc

% icc_shell -64bit

% ...

% Initializing...

% icc_shell> source icc_setup.tcl

% icc_shell> start_gui

Be sure to first source the setup script to load the libraries for the design. Once the graphical view
appears, select File > Open Design..., and use the file browser to select the saved database file
for the design (see Figure 6). The tcl scripts used to build the design save Milkyway views of the
intermediate stages, but we’re just interested in the final product for now. Select chip finish icc
and open the design.

You should now be looking at your completed layout of the Rocket core. The large SRAM blocks
are readily visible around the boundaries of the chip. These are not “real” SRAM cells, but rather
macros generated by an SRAM modeling tool called Cacti. Cacti takes information on the desired
size, design (6T vs. 8T), and technology of each SRAM cell in the design and generates “black
box” models that can be used for placement. It also generates power and timing models in formats
compatible with the Synopsys flow. You can mouse over the various SRAM cells to see their sizes
and uses in the processor. The largest blocks make up the two-ported L1 data cache, with the
instruction cache and several tag arrays also represented.

In addition to the text reports generated by ICC, several graphical views can illuminate trends or
issues in the design of digital hardware. In the Placement menu, select Cell Density Map. The
associated menu will appear in a sidebar. Click “Reload” and then “OK”. Now you can see the
placement density of the standard cells across the design (see Figure 7). In modern ASIC flows,
designers usually target a density of no more than 70 or 80 percent to allow space for clock tree
synthesis, buffer insertion, routing, and incremental tweaks to placement or other stages. The
histogram shows that our utilization is somewhat higher than is comfortable; ICC likely had to
expend a good deal of effort to make everything fit. Once you’re done looking at the placement
density, click the small “X” in the top right corner of the sidebar to return to the regular view.
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Figure 7: Standard cell density in the core.

Now let’s look at another design metric. In the Route menu, select Global Route Congestion Map.
This shows any areas where ICC had trouble routing all of the signals, either due to a large number
of wires or a narrowly constrained routing area (see Figure 8). ICC may have had some trouble
routing near the SRAM boundaries, as the SRAMs have blockages that prevent routing in many of
the layers above them.

Feel free to look at some of the other reports that can be generated in the ICC graphical view.
Once you’re finished, close ICC and return to the command line.

As evidenced by these ICC views of our design, we might do well to make some changes to the
design floorplan. Floorplanning is a key step in chip design, in which the designer determines such
aspects of the design as the location of macros and pins. A bad floorplan can significantly degrade
the quality of results from ICC.

In our case, we might improve our floorplan by simply increasing the total area of the chip available
for placement and routing. Open floorplan/floorplan.tcl, and find the line that sets the chip
area:

...

create_floorplan \

-control_type width_and_height -core_width 700 -core_height 700 \

-flip_first_row \

-start_first_row \

-left_io2core 5 \
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Figure 8: Congestion map of the core.

-bottom_io2core 5 \

-right_io2core 5 \

-top_io2core 5 \

...

Increase the core width and core height variables by 100um each. Then re-run ICC to completion
and compare the results. You should also take a look at the graphical view to see if the density
and congestion are improved.

If you’d like to make sure that your floorplan changes are incorporated into the design, you can
make just the first stage of the design with make init design icc. This allows you to open the
design and view the floorplan without having to run all the way through place-and-route.

Once you’re satisfied with your floorplan and ICC results, run post-layout simulations to verify
chip functionality.



CS250 Lab Assignment 2 (Version 091713), Fall 2013 21

Analyzing Power

In Lab 1, we used Primetime as a more accurate power simulator than ICC. For a more complex
design like the Rocket core, Primetime can also expose the dependence of system power consumption
on the inputs used on that system. In this case, our system inputs are the programs that are run
on the processor.

Start running Primetime on the Rocket core, using the RISC-V benchmarks:

% cd $LABROOT/vlsi/build/pt-pwr

% make

This Makefile compiles a different version of the post-PAR simv. This new simulator efficiently
generates vpd outputs that can be transformed into saif switching activity files for use with
Primetime. It then runs Primetime on each of the six functional processor benchmarks. These
simulations may also take some time to complete for this larger design.

When the power simulations have completed, open the generated power reports. Make a note of
the extent to which the power numbers vary based on the benchmark being run.



CS250 Lab Assignment 2 (Version 091713), Fall 2013 22

Submission and Writeup

Questions

1. With a stopwatch (or some other, more sophisticated timer), note how long it takes to simulate
the execution of the dhrystone.riscv benchmark in the following modes:

• ISA simulation

• Chisel C emulation

• Verilog RTL simulation

• Post-synthesis gate-level simulation

• Post-place-and-route gate-level simulation

Additionally, use your Python script and the generated log files to determine the number
of simulated cycles required to run this benchmark, and convert your results into units of
simulated cycles per second.

Given this discrepancy, why would designers ever want to simulate program execution on
post-PAR Verilog?

2. Step through a program of your choice in debug mode in the ISA simulator. Compare the
required number of cycles to complete the program to the number of cycles required to run
the program on the C emulator processor model. Explain the discrepancy.

3. Compare the worst critical paths of your post-synthesis results against those of your post-ICC
result. How does the timing of the whole design change after it goes through place-and-route?
Do the worst critical paths pass through the same modules or different ones? Why might this
be the case?

4. Run ICC with four different floorplans, varying the chip dimensions from 700um x 700um to
850um x 850um in increments of 50um. Make a table to compare the quality of the results
in terms of:

• Timing (worst negative slack)

• Area, according to the area report

• Density utilization (summarize this qualitatively by viewing the report graphically)

• Routing congestion (summarize this qualitatively by viewing the report graphically)

• ICC runtime (look at the timestamps on the generated log files)

Comment on any trends.
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5. Write a Python script to fill in the table below comparing the reported power numbers by
different parts of the design flow. Report average power in mW.

Tool Benchmark Total Switching Leakage Datapath ICache DCache
Power Power Power Power Power Power

DC -

ICC -

PrimeTime median

PrimeTime multiply

PrimeTime qsort

PrimeTime towers

PrimeTime vvadd

PrimeTime dhrystone

Submission

To complete this lab, you should commit the following files to your private Github repository:

• Your working C and assembly code.

• The reports directories from DC, ICC (4 runs), and Primetime. Please commit the text
reports only!

• Your Python scripts to analyze simulations and power numbers.

• Your answers to the questions above, in a file called writeup.txt or writeup.pdf.

Some general reminders about lab submission:

• If you are using one or more late days for this lab, please make a note of it in your writeup.
If you do not, your TA will assume that whatever was committed at the deadline represents
your submission for the lab, and any later commits will be disregarded.

• Please note in your writeup if you discussed or received help with the lab from others in the
course. This will not affect your grade, but is useful in the interest of full disclosure.

• Please note in your writeup (roughly) how many hours you spent on this lab in total.


