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In this tutorial you will gain experience using Synopsys Design Compiler (DC) to perform hardware
synthesis. A synthesis tool takes an RTL hardware description and a standard cell library as input
and produces a gate-level netlist as output. The resulting gate-level netlist is a completely structural
description with only standard cells at the leaves of the design. Internally, a synthesis tool performs
many steps including high-level RTL optimizations, RTL to unoptimized boolean logic, technology
independent optimizations, and finally technology mapping to the available standard cells. Good
RTL designers will familiarize themselves with the target standard cell library so that they can
develop a solid intuition on how their RTL will be synthesized into gates. In this tutorial you
will use Synopsys Design Compiler to elaborate RTL, set optimization constraints, synthesize to
gates, and prepare various area and timing reports. You will also learn how to read the various DC
text reports and how to use the graphical Synopsys Design Vision tool to visualize the synthesized
design.

Synopsys provides a library called Design Ware which includes highly optimized RTL for arithmetic
building blocks. DC can automatically determine when to use Design Ware components and it can
then efficiently synthesize these components into gate-level implementations. In this tutorial you
will learn more about what Design Ware components are available and how to best encourage DC
to use them.

The following documentation is located in the course locker (“cs250/docs/manuals) and provides
additional information about Design Compiler, Design Vision, the Design Ware libraries, and the
Synopsys 90nm Standard Cell Library.

e dc-user-guide.pdf - Design Compiler User Guide

e dc-quick-reference.pdf - Design Compiler Quick Reference

e dc-user-guide-cli.pdf - Design Compiler Command-Line Interface Guide

e dc-user-guide-tcl.pdf - Using Tcl With Synopsys Tools

e dc-user-guide-tco.pdf - Synopsys Timing Constraints and Optimization User Guide
e dc-reference-manual-opt.pdf - Design Compiler Optimization Reference Manual

e dc-reference-manual-presto-verilog.pdf - HDL Compiler Reference Manual

e dc-application-note-sdc.pdf - Synopsys Design Constraints Format Application Note
e dc_dv-user-guide.pdf - Design Vision User Guide

e dc_dv-tutorial.pdf - Design Compiler Tutorial Using Design Vision

e designware-intro.pdf - DesignWare Building Block IP Documentation Overview

e designware-user-guide.pdf - DesignWare Building Block IP

e designware-quick-reference.pdf - DesignWare Building Block IP Quick Reference
e designware-datasheets - Directory containing datasheets on each DW component

e synopsys-90nm-databook-stdcells.pdf - Digital Standard Cell Library Databook

e synopsys-90nm-databook-memories.pdf - Memory Databook

e synopsys-90nm-databook-opensparc.pdf - OpenSparc Megacell Databook
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Getting started

Before using the CS250 toolflow you must run the course setup script with the following command.
% source ~cs250/tools/cs250.bashrc

For this tutorial you will be using an unpipelined SMIPSv1 processor as your example RTL design.
You should create a working directory and copy files from the course locker using the following
commands.

% mkdir tutb

% cd tutb

% TUT5_RO0T="‘pwd‘

% cp -R “cs250/examples/v-smipsvi-1stage/* $TUT5_ROOT

Before starting, take a look at the subdirectories in the project directory. Figure 1 shows the system
diagram which is implemented by the example code. When pushing designs through the physical
toolflow you will often refer to the core. The core module contains everything which will be on-chip,
while blocks outside the core are assume to be off-chip. For this tutorial you are assuming that
the processor and a combinational memory are located within the core. A combinational memory
means that the read address is specified at the beginning of the cycle, and the read data returns
during the same cycle. Building large combinational memories is relatively inefficient. It is much
more common to use synchronous memories. A synchronous memory means that the read address
is specified at the end of a cycle, and the read data returns during the next cycle. From Figure 1
it should be clear that the unpipelined SMIPSv1 processor requires combinational memories (or
else it would turn into a four stage pipeline). For this tutorial you will not be using a real
combinational memory, but instead you will use a dummy memory to emulate the
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Figure 1: Block diagram for Unpipelined SMIPSv1 Processor
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combinational delay through the memory. Examine the source code in src and compare
smipsCore rtl with smipsCore synth. The smipsCore rtl module is used for simulating the
RTL of the SMIPSv1 processor and it includes a functional model for a large on-chip combinational
memory. The smipsCore_synth module is used for synthesizing the SMIPSv1 processor and it uses
a dummy memory. The dummy memory combinationally connects the memory request bus to
the memory response bus with a series of standard-cell buffers. Obviously, this is not functionally
correct, but it will help you illustrate more reasonable critical paths in the design. In later tutorials,
you will start using synchronous on-chip SRAMs.

Now examine the build directory. This directory will contain all generated content including
simulators, synthesized gate-level Verilog, and final layout. In this course you will always try to
keep generated content separate from your source RTL. This keeps your project directories well
organized, and helps prevent you from unintentionally modifying your source RTL. There are sub-
directories in the build directory for each major step in the CS250 toolflow. These subdirectories
contain scripts and configuration files for running the tools required for that step in the toolflow.
For this tutorial we will work exclusively in the dc-syn. Notice that there are two makefiles
in the dc-syn directory. Since we are using dummy memory go ahead and make a symlink to
Makefile.dummy.

% cd $TUT5_ROOT/build/dc-syn
% 1n -s Makefile.dummy Makefile

Synthesizing the Processor

You will begin by running several DC commands manually before learning how you can automate
the tool with scripts. DC can generate a large number of output files, so you will be running DC
within a build directory beneath dc-syn. Use the following commands to create a build directory
for DC and to start the DC shell.

% cd $TUT5_ROO0T/build/dc-syn
% mkdir manual

% cd manual

% dc_shell-xg-t

Initializing...
dc_shell>

You should be left at the DC shell prompt from which you can can execute various commands to
load in your design, specify constraints, synthesize your design, print reports, etc. You can get
more information about a specific command by entering man <command> at the dc_shell prompt.
You will now execute some commands to setup your environment.

dc_shell> set_app_var search_path \
"~cs250/stdcells/synopsys-90nm/default/db/cells \
~cs250/install/veclib \
../../../src"
dc_shell> set_app_var target_library "cells.db"
dc_shell> set_app_var synthetic_library "dw_foundation.sldb"
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dc_shell> set_app_var link_library "* $target_library $synthetic_library"

dc_shell> set_app_var alib_library_analysis_path \
"/home/ff/cs250/stdcells/synopsys-90nm/default/alib"

dc_shell> define_design_lib WORK -path "./work"

These commands point to your Verilog source directory, create a Synopsys work directory, and
point to the standard libraries you will be using for this class. The DB files contain wireload
models and timing/area information for each standard cell. DC will use this information to try
and optimize the synthesis process. You can now load your Verilog design into Design Compiler
with the analyze, elaborate, and link commands. Executing these commands will result in a
great deal of log output as the tool elaborates some Verilog constructs and starts to infer some
high-level components. Try executing the commands as follows. To prevent the dummy memory
being optimized away, we tell DC not to touch imem read delay and dmem_read delay.

dc_shell> analyze -format verilog \
"vcMuxes.v vcStateElements.v vcRAMs.v vcArith.v \
smipsInst.v smipsProcCtrl.v smipsProcDpathRegfile.v
smipsProcDpath_pstr.v smipsProc.v smipsCore_synth.v"

dc_shell> elaborate "smipsCore_synth"

dc_shell> link

dc_shell> set_dont_touch "dmem/imem_read_delay dmem/dmem_read_delay"

Take a closer look at the output during elaboration. DC will report all state inferences. This is a
good way to verify that latches and flip-flops are not being accidentally inferred. You should be
able to check that the only inferred state elements are the PC, the tohost register, a one-bit reset
register, and the register file. DC will also note information about inferred muxes. Figure 2 shows a
fragment from the elaboration output text. From this output you can see that DC is inferring 32-bit
flip-flops for the register file and two 32 input 32-bit muxes for the register file read ports. See the
HDL Compiler Presto Verilog Reference Manual (dc-reference-manual-presto-verilog.pdf)
for more information on the output from the elaborate command and more generally how DC
infers combinational and sequential hardware elements.

After reading your design into DC you can use the check design command to check that the design
is consistent. A consistent design is one which does not contain any errors such as unconnected
ports, constant-valued ports, cells with no input or output pins, mismatches between a cell and its
reference, multiple driver nets, connection class violations, or recursive hierarchy definitions. You
will not be able to synthesize your design until you eliminate any errors. Many of these warning
are obviously not an issue, but it is still useful to skim through this output.

dc_shell> check_design

Before you can synthesize your design, you must specify some constraints; most importantly you
must tell the tool your target clock period. The following commands tell the tool that the pin named
clk is the clock and that your desired clock period is 2 nanoseconds. You need to set the clock period
constraint carefully. If the period is unrealistically small, then the tools will spend forever trying to
meet timing and ultimately fail. If the period is too large, then the tools will have no trouble but
you will get a very conservative implementation. For more information about constraints consult
the Synopsys Timing Constraints and Optimization User Guide (dc-user-guide-tco.pdf).

dc_shell> create_clock clk -name ideal_clockl -period 2
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Now you are ready to use the compile_ultra command to actually synthesize your design into a
gate-level netlist. —no_autoungroup is specified in order to preserve the hierarchy during synthesis
or disable inter-module optimizations. With no options given, compile ultra command optimizes
across module boundaries. Set compile_ultra_ungroup_dw to false to prevent ungrouping Design
Ware hierarchies as well as compile_seqmap_propagate_constants to false to disable DC’s con-
stant propagation optimization by running this command. Because of emulating the gate delay
of the combinational memory by putting dummy buffers in, DC is going to optimize away a lot
of gates, and as a result it will be hard to understand the synthesis reports. However, in a real
situation, you would like to use synthesis with both options turned on. For more information on
the compile ultra command consult the Design Compiler User Guide (dc-user-guide.pdf) or
use man compile ultra at the DC shell prompt. Run the following command and take a look at
the output.

DC will attempt to synthesize your design while still meeting the constraints. DC considers two
types of constraints: user specified constraints and design rule constraints. User specified constraints
can be used to constrain the clock period (as you saw with the create_clock command) but they
can also be used to constrain the arrival of certain input signals, the drive strength of the input
signals, and the capacitive load on the output signals. Design rule constraints are fixed constraints
which are specified by the standard cell library. For example, there are restrictions on the loads
specific gates can drive and on the transition times of certain pins. For more information consult
Synopsys Design Constraints Format Application Note (dc-application-note-sdc.pdf).

dc_shell> set_app_var compile_ultra_ungroup_dw false
dc_shell> set_app_var compile_seqmap_propagate_constants false
dc_shell> compile_ultra -no_autoungroup

The compile command will report how the design is being optimized. You should see DC performing
technology mapping, delay optimization, and area reduction. Figure 3 shows a fragment from the
compile output. Each line is an optimization pass. The area column is in units specific to the
standard cell library which is um?, but for now you should just use the area numbers as a relative

in routine smipsProcDpathRegfile line 26 in file
>../../../src/smipsProcDpathRegfile.v’.

| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
| registers_reg | Flip-flop | 32 | Y | N | N | N [N | N |N |
| registers_reg | Flip-flop | 32 | Y | N |N | N |N |IN [N |

Statistics for MUX_O0OPs

| block name/line | Inputs | Outputs | # sel inputs | MB |
| smipsProcDpathRegfile/22 | 32 | 32 | 5 | N |
| smipsProcDpathRegfile/23 | 32 | 32 | 5 | N |

Figure 2: Output from the Design Compiler elaborate command



CS250 Tutorial 5 (Version 092509a), Fall 2009 6

metric. The worst negative slack column shows how much room there is between the critical path
in your design and the clock constraint. Larger negative slack values are worse since this means
that your design is missing the desired clock frequency by a greater amount. Total negative slack
is the sum of all negative slack across all endpoints in the design - if this is a large negative number
it indicates that not only is the design not making timing, but it is possible that many paths are
too slow. If the total negative slack is a small negative number, then this indicates that only a
few paths are too slow. The design rule cost is a indication of how many cells violate one of the
standard cell library design rules constraints. Figure 3 shows that on the first iteration, the tool
makes timing but at a high area cost, so on the second iteration it optimizes area but this causes
the design to no longer meet timing. The tool continues to optimize until it meets the constraints.

Beginning Delay Optimization Phase

ELAPSED WORST NEG TOTAL NEG DESIGN

TIME AREA SLACK SLACK  RULE COST ENDPOINT
0:05:45 98690.3 0.45 382.2 0.0

0:05:53  99117.5 0.43 376.0 0.0

0:05:59  99455.9 0.42 362.3 0.0

0:11:55 124976.8 0.04 0.9 0.0

0:12:01 124885.5 0.00 0.0 0.0

0:12:01 124885.5 0.00 0.0 0.0

Beginning Area-Recovery Phase (max_area 0)

ELAPSED WORST NEG TOTAL NEG DESIGN

TIME AREA SLACK SLACK  RULE COST ENDPOINT
0:12:01 124885.5 0.00 0.0 0.0

0:13:07 116502.9 0.00 0.0 0.0

0:13:07 116496.8 0.00 0.0 0.0

Figure 3: Output from the Design Compiler compile ultra command

You can now use various commands to examine timing paths, display reports, and further optimize
your design. Entering in these commands by hand can be tedious and error prone, plus doing
so makes it difficult to reproduce a result. Thus you will mostly use TCL scripts to control the
tool. Even so, using the shell directly is useful for finding out more information about a specific
command or playing with various options.

Before continuing, exit the DC shell and delete your build directory with the following commands.

dc_shell> exit
% cd $TUT5_ROOT/build/dc-syn
% rm -rf manual



CS250 Tutorial 5 (Version 092509a), Fall 2009 7

Automating Synthesis with TCL Scripts and Makefiles

In this section you will examine how to use various TCL scripts and makefiles to automate the
synthesis process. There are four files in the build/dc-syn directory.

e Makefile - Makefile for driving synthesis with the TCL scripts
e dc_scripts/dc.tcl - Primary TCL script which contains the DC commands
e scripts/dc_setup.tcl - TCL fragment which will setup various library variables

e constraints.tcl - User specified constraints

First take a look at the dc_setup.tcl script. You will see that it sets up several library variables,
creates the search path, and instructs DC to use a work directory. The first line of the dc_setup.tcl
script loads the make _generated vars.tcl script. This script is generated by the makefile and it
contains variables which are defined by the makefile and used by the TCL scripts. You will take a
closer look at it in a moment. Now examine the dc.tcl script. You will see many familiar commands
which we executed by hand in the previous section. You will also see some new commands. Take
a closer look at the bottom of this TCL script where we write out several text reports. Remember
that you can get more information on any command by using man <command> at the DC shell
prompt. The constraints.tcl file contains various user specified constraints. This is where you
constrain the clock period. You also specify that DC should assume that minimum sized inverters
are driving the inputs to the design and that the outputs must drive 4 fF of capacitance.

Now that you are more familiar with the various TCL scripts, you will see how to use the makefile to
drive synthesis. Look inside the makefile and identify where the Verilog sources are defined. Notice
that you are using smipsCore synth.v instead of smipsCore rtl.v and that the test harness is
not included. You should only list those Verilog files which are part of the core; do not included
non-synthesizable test harnesses modules. Also notice that we must identify the toplevel Verilog
module in the design. You also specify several modules in the dont_touch make variable. Any
modules which you list here will be marked with the DC set_dont_touch command. DC will not
optimize any modules which are marked don’t touch. In this tutorial you are marking the dummy
memories don’t touch so that DC does not completely optimize away the buffer chain you are using
to model the combinational delay through the memory. The build rules in the makefile will create
new build directories, copy the TCL scripts into these build directories, and then run DC. Use the
following make target to create a new build directory.

% cd $TUT5_RDDT/build/dc—Syn
% make new-build-dir

You should now see a new build directory named build-<date> where <date> represents the
time and date. The current-dc symlink always points to the most recent build directory. If
you look inside the build directory, you will see the dc_setup.tcl, dc.tcl, and constraints.tcl
scripts but you will also see an additional make generated vars.tcl script. Various variables
inside make generated vars.tcl are used to specify the search path, which Verilog files to read
in, which modules should be marked don’t touch, the toplevel Verilog name, etc. After using
make new-build-dir you can cd into the current-dc directory, start the DC shell, and run DC
commands by hand. For example, the following sequence will perform the same steps as in the
previous section.
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% cd $TUT5_RO0OT/build/dc-syn

% cd current-dc

% dc_shell-xg-t

dc_shell> source dc_setup.tcl

dc_shell> define_design_lib WORK -path ./work
dc_shell> analyze -format verilog ${RTL_SOURCE_FILES}
dc_shell> elaborate ${DESIGN_NAME}

dc_shell> link

dc_shell> source constraints.tcl

dc_shell> compile_ultra -no_autoungroup
dc_shell> exit

The new-build-dir make target is useful when you want to conveniently run through some DC
commands by hand to try them out. To completely automate your synthesis you can use the dc
make target (which is also the default make target). For example, the following commands will
automatically synthesize the design and save several text reports to the build directory.

% cd $TUT5_ROOT/build/dc-syn
% make dc

You should see DC compiler start and then execute the commands located in the dc.tcl script.
Once synthesis is finished try running make dc again. The makefile will detect that nothing has
changed (i.e. the Verilog source files and DC scripts are the same) and so it does nothing. Make a
change to one of the TCL scripts. Edit constraints.tcl and change the clock period constraint
to 10ns. Now use make dc to resynthesize the design. Since a TCL script has changed, make will
correctly run DC again. Take a look at the current contents of dc-syn.

% cd $TUT5_RUDT/build/dc—Syn
% 1s -1

drwxr-xr-x 6 cs250 cs250 4096 2009-08-31 21:27 build-dc-2009-08-31_21-17
drwxr-xr-x 6 cs250 cs250 4096 2009-08-31 21:30 build-dc-2009-08-31_21-28
-rw-r-—-r—— 1 ¢s250 ¢s250 1109 2009-08-31 21:28 constraints.tcl
lrwxrwxrwx 1 c¢s250 cs250 25 2009-08-31 21:28 current-dc -> build-dc-2009-08-31_21-28
drwxr-xr-x 2 c¢s250 cs250 4096 2009-08-31 20:36 dc_scripts
drwxr-xr-x 2 c¢s250 cs250 4096 2009-08-14 16:49 fm_scripts
lruxrwxrwx 1 cs250 ¢s250 14 2009-08-31 21:07 Makefile -> Makefile.dummy
-rw-r--r—-- 1 ¢s250 ¢s250 3911 2009-08-31 21:06 Makefile.combinational
-rw-r—-r-- 1 c¢s250 c¢s250 4121 2009-08-31 21:01 Makefile.dummy
2

drwxr-xr-x 2 c¢s250 cs250 4096 2009-08-31 20:48 scripts

Notice that the makefile does not overwrite build directories. It always creates new build directories.
This makes it easy to change your synthesis scripts or source Verilog, resynthesize your design, and
compare your results to previous designs. You can use symlinks to keep track of what various build
directories correspond to. For example, the following commands label the build directory which
corresponds to a 2ns clock period constraint and the build directory which corresponds to a 10ns
clock period constraint.

% cd $TUT5_RO0T/build/dc-syn
% 1ln -s build-dc-2009-08-31_21-17/ build-2ns
% 1ln -s build-dc-2009-08-31_21-28/ build-10ns
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Every so often you should delete old build directories to save space. The make clean command will
delete all build directories so use it carefully. Sometimes you want to really force the makefile to
resynthesize the design but for some reason it may not work properly. To force a resynthesis without
doing a make clean simply remove the current symlink. For example, the following commands
will force a resynthesis without actually changing any of the source TCL scripts or Verilog.

% cd $TUT5_RDDT/build/dc—syn
% rm -f current
% make dc

Interpreting the Synthesized Gate-Level Netlist and Text Reports

In this section you will examine some of the output which our dc.tcl script generates. You will ini-
tially focus on the contents of the build-10ns build directory. The primary output from the synthe-

sis scripts is the synthesized gate-level netlist which is contained in results/smipsCore_synth.mapped.v.
Take a look at the gate-level netlist for the 10ns clock constraint. Notice that the RTL module
hierarchy is preserved in the gate-level netlist since you did not flatten any part of your design.

Find the four two-input multiplexers in the gate-level netlist by searching for vcMux2. Although

the same two-input mux was instantiated four times in the design (the PC mux, the ALU operand
muxes, and the writeback mux), DC has optimized each multiplexer differently. Figure 4 shows the
gate-level netlist for two of the synthesized multiplexers.

Use the databook for the Synopsys 90nm Standard Cell Library (synopsys-90nm-databook-stdcells.pdf)
to determine the function of the MUX21X1 standard cell. You should discover that this is a 2 input
1-bit mux cell. From the gate-level netlist you can determine that these are the operand muxes for
the ALU and that vcMux2_W32_3 is used to select between the two sign-extension options. Notice
that the veMux2 W32 2 mux uses 32 mux cells, while veMux2 W32_3 uses only 30 mux cells. DC has
discovered that the low-order two bits of one of the inputs to the veMux2_W32_3 mux are always
zero (this corresponds to the two zeros which are inserted after shifting the sign-extension two
bits to the left). So DC has replaced mux cells with an inverter-nor combination for these two
low-order bits. Also notice that both mux modules include an extra buffers. Carefully tracing the
netlist shows that these buffers are used to drive the select lines to the mux cells. DC does some
very rough buffer insertion, but DC’s primitive wireload models usually result in very conservative
buffering. You can compare this to the buffer insertion which occurs during place and route. After
place and route the tools are able to use much better wire modeling and as a result produce much
better buffer insertion.

In addition to the actual synthesized gate-level netlist, the dc.tcl also generates several reports.
Reports usually have the rpt filename suffix. The following is a list of the synthesis reports.

e reports/*.mapped.area.rpt - Area information for each module instance

e reports/*.mapped.power.rpt - Power information for each module instance

e reports/*.mapped.resources.rpt - Information on Design Ware components

e reports/*.mapped.reference.rpt - Information on references

e reports/*.mapped.timing.rpt - Contains critical timing paths

e reports/*.mapped.qor.rpt - QoR (Quality of Result) information and statistics
e log/dc.log - Log file of all output during DC run



CS250 Tutorial 5 (Version 092509a), Fall 2009

module vcMux2_W32_0_MUX_0P_2_1.32_2 ( ... );
input ...;
output ...;

wire nl, n2, n3;

NBUFFX2 U1 ( .IN(S0), .Q(nl) );
NOR2X0 U2 ( .IN1i(n1), .IN2(n3), .QN(Z_30) );
NOR2X0 U3 ( .IN1(n1), .IN2(n2), .QN(Z_31) );
MUX21X1 U4 ( .IN1(DO_2), .IN2(D1_2), .S(S0), .Q(Z_2) );
MUX21X1 U5 ( .IN1(DO_3), .IN2(D1_3), .S(S0), .Q(Z_3) );

. 26 additional MUX21X1 instantiations ...
MUX21X1 U30 ( .IN1(DO_28), .IN2(D1_28), .S(mn1), .Q(Z_28) );
MUX21X1 U31 ( .IN1(DO_29), .IN2(D1_29), .S(mn1), .Q(Z_29) );
INVXO U32 ( .IN(DO_31), .QN(n2) );
INVXO U33 ( .IN(DO_30), .QN(n3) );
MUX21X1 U34 ( .IN1(DO_0), .IN2(D1_0), .S(S0), .Q(Z_0) );
MUX21X1 U35 ( .IN1(DO_1), .IN2(D1_1), .S(S0), .Q(Z_1) );

endmodule

module vcMux2_W32_3 ( inO, inl, sel, out );
input [31:0] inO;
input [31:0] inl;
output [31:0] out;
input sel;

vcMux2_W32_0_MUX_0P_2_1.32_2 C40 ( ... );
endmodule

module vcMux2_W32_0_MUX_0P_2_1_32_1 ( ... );
input ...;
output ...;
wire nl;

NBUFFX2 U1 ( .IN(S0), .Q(nl) );
MUX21X1 U2 ( .IN1(DO_7), .IN2(D1_7), .S(n1), .QCZ_7) );
MUX21X1 U3 ( .IN1(DO_8), .IN2(D1_8), .S(n1), .Q(Z_8) );
. 28 additional MUX21X1 instantiations ...
MUX21X1 U32 ( .IN1(DO_2), .IN2(D1_2), .S(S0), .Q(Z_2) );
MUX21X1 U33 ( .IN1(DO_3), .IN2(D1_3), .S(S0), .Q(Z_3) );
endmodule

module vcMux2_W32_2 ( in0O, inl, sel, out );
input [31:0] inO;
input [31:0] inil;
output [31:0] out;
input sel;

vcMux2_W32_0_MUX_0P_2_1_.32_1C40 ( ... );
endmodule

Figure 4: Gate-Level Netlist for Two Synthesized 32 Input 32-bit Muxes
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In this section you will discuss the area.rpt, timing.rpt, and the reference.rpt reports. The
next section will discuss the resources.rpt report. The area.rpt report contains area informa-
tion for each module in the design. Figure 5 shows a fragment from area.rpt for the SMIPSv1
unpipelined processor. You can use the reference.rpt report (Figure 6 to gain insight into how
various modules are being implemented. For example, you can use the reference report in a similar
fashion as the results/smipsCore _synth.mapped.v gate-level netlist to see that the vcMux2 W32_3
module includes only 30 mux cells and uses bit-level optimizations for the remaining two bits.

You can also use the area report to measure the relative area of the various modules. The report
clearly shows that the majority of the processor area is in the datapath. More specifically you can
see that register file consumes 85% of the total processor area. The reference report reveals that
the register file is being implemented with approximately 1000 enable flip-flops and input muxes
(for the read ports). This is a very inefficient way to implement a register file, but it is the best the
synthesizer can do. Real ASIC designers rarely synthesize memories and instead turn to memory
generators. A memory generator is a tool which takes an abstract description of the memory block
as input and produces a memory in formats suitable for various tools. Memory generators use
custom cells and procedural place4route to achieve an implementation which can be an order of
magnitude better in terms of performance and area than synthesized memories.

Figure 7 illustrates a fragment of the timing report found in timing.rpt. The report lists the
critical path of the design. The critical path is the slowest logic path between any two registers and
is therefore the limiting factor preventing you from decreasing the clock period constraint (and thus
increasing performance). The report is generated from a purely static worst-case timing analysis
(i.e. independent of the actual signals which are active when the processor is running). The first
column lists various nodes in the design. Note that several nodes internal to higher level modules
have been cut out to save space. The last column lists the cumulative delay to that node, while the
middle column shows the incremental delay. You can see that the critical path starts at bit 21 of
the PC register; goes through the combinational read of the instruction memory; goes through the
read address of the register file and out the read data port; goes through the operand mux; through
the adder; out the data memory address port and back in the data memory response port; through
the writeback mux; and finally ends at bit 31 of register 1 in the register file. The large buffers in
the memory (the AOBUFX1 cell in the dmem module) model the combinational delay through these
memories. You can use the delay column to get a feel for how much each module contributes to the
critical path: the combinational memories contribute about 0.2 ns; the register file read contributes
about 1.2ns; the adder contributes 4.5 ns; and the write back mux requires 0.5 ns.

The critical path takes a total of 7.94ns which is less than the 10ns clock period constraint. Notice,
however, that the final register file flip-flop has a setup time of 0.09ns. So the critical path plus
the setup time (9.91ns + 0.09ns = 10ns) is just fast enough to meet the clock period constraint.

Synopsys Design Ware Libraries

Synopsys provides a library of commonly used arithmetic components as highly optimized building
blocks. This library is called Design Ware and DC will automatically use Design Ware components
when it can. To get a feel for what type of components are available, take a look at the Design
Ware Quick Reference Guide (designware-quick-reference.pdf). The components you will be
using in the class are the Building Block IP described in Chapter 2.
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Global cell area Local cell area
Hierarchical cell Absolute Percent Combi- Noncombi- Black
Total Total national national boxes
smipsCore_synth 109322.2266 100.0 0.0000 0.0000 0.0000
dmem 5937.3125 5.4 260.2711 0.0000 0.0000
dmem/dmem_read_delay 2838.5305 2.6 2838.5305 0.0000 0.0000
dmem/imem_read_delay 2838.5305 2.6 2838.5305 0.0000 0.0000
proc 103359.8906 94.5 0.0000 0.0000 0.0000
proc/ctrl 902.4932 0.8 594.6781 0.0000 0.0000
proc/ctrl/tohost_pf 307.8150 0.3 108.7510 199.0640 0.0000
proc/dpath 102457 .2656 93.7 93.0850 0.0000 0.0000
proc/dpath/adder 3842.9329 3.5 0.0000 0.0000 0.0000
proc/dpath/adder/add_x_28_1 3842.9329 3.5 3842.9329 0.0000 0.0000
proc/dpath/branch_cond_gen 740.9798 0.7 740.9798 0.0000 0.0000
proc/dpath/op0_mux 393.4940 0.4 0.0000 0.0000 0.0000
proc/dpath/op0_mux/C40 393.4940 0.4 393.4940 0.0000 0.0000
proc/dpath/opl_mux 1005.2824 0.9 0.0000 0.0000 0.0000
proc/dpath/opl_mux/C40 1005.2824 0.9 1005.2824 0.0000 0.0000
proc/dpath/pc_incéd 939.8579 0.9 0.0000 0.0000 0.0000
proc/dpath/pc_inc4/add_x_56_1 939.8579 0.9 939.8579 0.0000 0.0000
proc/dpath/pc_mux 690.4892 0.6 0.0000 0.0000 0.0000
proc/dpath/pc_mux/C40 690.4892 0.6 690.4892 0.0000 0.0000
proc/dpath/pc_pf 1271.3844 1.2 285.3800 986.0039 0.0000
proc/dpath/rfile 92731.5703 84.8 11953.2773 54706.9766 0.0000
proc/dpath/rfile/C4408 17474 .4590 16.0 17474.4590 0.0000 0.0000
proc/dpath/rfile/C4409 8594 .5879 7.9 8594 .5879 0.0000 0.0000
proc/dpath/sext 171.4300 0.2 171.4300 0.0000 0.0000
proc/dpath/wb_mux 576.2928 0.5 0.0000 0.0000 0.0000
proc/dpath/wb_mux/C40 576.2928 0.5 576.2928 0.0000 0.0000
resetO_pf 24.8830 0.0 0.0000 24.8830 0.0000
Total 53402.3086 55916.9258 0.0000

Figure 5: Fragment from smipsCore_synth.mapped.area.rpt

>k >k >k >k >k >k >k >k >k >k >k >k >k %k >k >k %k %k >k >k >k >k >k 5k 5k 5k %k %k %k %k >k %k %k %k >k >k >k >k %k %k

Design: vcMux2_W32_3 -> vcMux2_W32_0_MUX_0P_2_1_32_2
skesksk ke ok sk ok sk sk sk sk ok sk sk sk sk ok sk sk ok sk sk sk sk sk ok sk sk ok sk sk sk ok

Reference Library Unit Area  Count Total Area
Attributes

INVXO saed90nm_typ 5.530000 2 11.060000
MUX21X1 saed90nm_typ 11.059000 30 331.770000
NBUFFX2 saed90nm_typ 5.530000 1 5.530000
NOR2X0 saed90nm_typ 5.530000 2 11.060000
Total 4 references 359.420002

Figure 6: Fragment from smipsCore _synth.mapped.reference.rpt
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Point Fanout Trans Incr Path

clock ideal_clockl (rise edge) 0.00 0.00

clock network delay (ideal) 0.00 0.00

proc/dpath/pc_pf/q_np_reg_21_/CLK (DFFX1) 0.00 0.00 # 0.00 T
proc/dpath/pc_pf/q_np_reg_21_/Q (DFFX1) 0.05 0.21 0.21 r
proc/dpath/pc_pf/q_np[21] (vcRDFF_pf_32_00001000) 0.00 0.21 r
proc/dpath/imemreq_bits_addr[21] (smipsProcDpath_pstr) 0.00 0.21 r
proc/imemreq_bits_addr[21] (smipsProc) 0.00 0.21 r
dmem/imemreq_bits_addr[21] (smipsDummyMemory_DELAY4) 0.00 0.21 r
dmem/imem_read_delay/in[21] (smipsDelayChain_WIDTH32_DELAY4) 0.00 0.21 r
dmem/imem_read_delay/row_O__bit_21__delay/Q (AOBUFX1) 0.03 0.06 0.26 r
dmem/imem_read_delay/row_3__bit_21__delay/Q (AOBUFX1) 0.04 0.06 0.43 r
dmem/imem_read_delay/out[21] (smipsDelayChain_WIDTH32_DELAY4) 0.00 0.43 r
dmem/imemresp_bits_data[21] (smipsDummyMemory_DELAY4) 0.00 0.43 r
proc/imemresp_bits_data[21] (smipsProc) 0.00 0.43 r
proc/ctrl/imemresp_bits_data[21] (smipsProcCtrl) 0.00 0.43 r
proc/ctrl/U57/Q (NBUFFX32) 0.66 0.51 0.93 r
proc/ctrl/rf_raddrO[0] (smipsProcCtrl) 0.00 0.93 r
proc/dpath/rf_raddr0[0] (smipsProcDpath_pstr) 0.00 0.93 r
proc/dpath/rfile/raddr0[0] (smipsProcDpathRegfile) 0.00 0.93 r
proc/dpath/rfile/rdata0[0] (smipsProcDpathRegfile) 0.00 2.10 r
proc/dpath/opl_mux/in1[0] (vcMux2_W32_2) 0.00 2.10 r
proc/dpath/opl_mux/out [0] (vcMux2_W32_2) 0.00 2.19 r
proc/dpath/adder/in1[0] (vcAdder_simple_W32) 0.00 2.19 r
proc/dpath/adder/add_x_28_1/B[0] (vcAdder_simple_W32_DWO01_add_0) 0.00 2.19 r
proc/dpath/adder/add_x_28_1/SUM[31] (vcAdder_simple_W32_DWO1_add_0) 0.00 6.92 r
proc/dpath/adder/out [31] (vcAdder_simple_W32) 0.00 6.92 r
proc/dpath/dmemreq_bits_addr[31] (smipsProcDpath_pstr) 0.00 6.92 r
proc/dmemreq_bits_addr[31] (smipsProc) 0.00 6.92 r
proc/dmemresp_bits_data[31] (smipsProc) 0.00 7.21 r
proc/dpath/dmemresp_bits_data[31] (smipsProcDpath_pstr) 0.00 7.21 r
proc/dpath/wb_mux/in1[31] (vcMux2_W32_1) 0.00 7.21 r
proc/dpath/wb_mux/out [31] (vcMux2_W32_1) 0.00 7.76 T
proc/dpath/rfile/wdata_p[31] (smipsProcDpathRegfile) 0.00 7.76 T
proc/dpath/rfile/U106/Q (MUX21X1) 0.11 0.18 7.94 r
proc/dpath/rfile/registers_reg_1__31_/D (DFFX1) 0.11 0.00 7.94 r
data arrival time 7.94

clock ideal_clockl (rise edge) 10.00 10.00

clock network delay (ideal) 0.00 10.00

proc/dpath/rfile/registers_reg_1__31_/CLK (DFFX1) 0.00 10.00 r
library setup time -0.09 9.91

data required time 9.91

data required time 9.91

data arrival time -7.94

slack (MET) 1.97

Figure 7: Fragment from synth_timing.rpt
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The reference.rpt report can help you determine when DC is using Design Ware components.
For example, if you look at the vcAdder simple W32 module in synth_area.rpt you will see that it
contains a single module named vcAdder_simple W32 DWO1_add O which was not present in our orig-
inal RTL module hierarchy. The DWO1_add in the module name indicates that this is a Design Ware
adder. To find out more information about this component you can refer to the corresponding De-
sign Ware datasheet located in the locker (“cs250/docs/manuals/designware-datasheets/dw01_addpdf).
The data sheets contain information on the different component implementation types. For exam-
ple, DC can use a ripple-carry adder, a carry-lookahead adder, delay-optimized flexible parallel-
prefix adder, or an area-optimized flexible parallel-prefix adder. The resources.rpt report con-
tains information on which implementation was chosen for each Design Ware component. Figure 8
shows a fragment from resources.rpt which indicates that the adder uses a apparch implemen-
tation. The apparch implementation is an area-optimized flexible parallel-prefix adder. Compare
this to what is generated with the 2ns clock constraint. Look at the resources.rpt file in the
build-2ns directory. Figure 9 shows that with the much faster clock period constraint, DC has cho-
sen to use a delay-optimized flexible parallel-prefix adder (pparch). Although the area-optimized
flexible parallel-prefix adder is slower than the delay-optimized parallel-prefix adder, it is still fast
enough to meet the clock period constraint and it uses significantly less area.

There are two ways to use Design Ware components: inference or instantiation. For each com-
ponent the corresponding datasheet outlines the appropriate Verilog RTL which should result in
DC inferring that Design Ware component. Note that sometimes DC decides not to use a Design
Ware component because it can do other optimizations which result in a better implementation. If
you really want to try and force DC to use a specific Design Ware component you can instantiate
the component directly. If you use direct instantiation you will need to included the appropriate
Verilog model so that VCS can simulate the component. You can do this by adding the following
command line parameter to VCS.

-y $DC_HOME/dw/sim_ver +libext+.v+

We suggest only using direct instantiation as a last resort since it it creates a dependency between
your high-level design and the Design Ware libraries, and it limits the options available to Design
Compiler during synthesis.

| Cell | Module | Parameters | Contained Operations |
| add_x_28_1 | DWO1_add | width=32 | add_28 |
| | | Current | Set |
| Cell | Module | Implementation | Implementation |
| add_x_28_1 | DWO1_add | apparch | |

Figure 8: Fragment from resources.rpt for 10 ns clock period
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| Cell | Module | Parameters | Contained Operations |
| add_x_28_1 | DWO1_add | width=32 | add_28

| | | Current | Set |
| Cell | Module | Implementation | Implementation

| add_x_28_1 | DWO1_add | pparch | |

Figure 9: Fragment from resources.rpt for 2ns clock period

Using Design Vision to Analyze the Synthesized Gate-Level Netlist

Synopsys provides a GUI front-end to Design Compiler called Design Vision which you will use to
analyze the synthesis results. You should avoid using the GUI to actually perform synthesis since
you want to use scripts for this. To launch Design Vision and read in your synthesized design, move
into the appropriate working directory and use the following commands.

% cd $TUT5_RO0T/build/dc-syn

% cd current

% design_vision-xg

design_vision> source dc_setup.tcl

design_vision> read_ddc results/smipsCore_synth.mapped.ddc

You can browse your design with the hierarchical view. If you right click on a module and choose
the Schematic View option, the tool will display a schematic of the synthesized logic corresponding
to that module. Figure 10 shows the schematic view for the datapath adder module with the 10 ns
clock constraint. Notice the ripple-carry structure of the adder.

You can use Design Vision to examine various timing data. The Timing > Paths Slack menu
option will create a histogram of the worst case timing paths in your design. You can use this
histogram to gain some intuition on how to approach a design which does not meet timing. If there
are a large number of paths which have a very large negative timing slack then a global solution is
probably necessary, while if there are just one or two paths which are not making timing a more
local approach may be sufficient. You can click on a bin and the tool will report critical paths
in the bin. Figure 12 shows an example of using these two features. Go ahead and right click to
choose Path Inspector. Figure 77 shows the actual components on the critical path.

It is sometimes useful to examine the critical path through a single submodule. To do this, right
click on the module in the hierarchy view and use the Characterize option. Check the timing,
constraints, and connections boxes and click OK. Now choose the module from the drop down list
box on the toolbar (called the Design List). Choosing Timing > Report Timing Path will provide
information on the critical path through that submodule given the constraints of the submodule
within the overall design’s context.

Fore more information on Design Vision consult the Design Vision User Guide (dc_dv-user-guide.pdf).
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Figure 11: Screen shot of timing results in Design Vision
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Figure 12: Screen shot of the path inspector in Design Vision

Review

The following sequence of commands will setup the CS250 toolflow, checkout the SMIPSv1 processor
example, and synthesize the design.

b
)
b
)
b
)

source ~cs250/tools/cs250.bashrc

mkdir tutb

cd tutb

cp -R “cs250/examples/v-smipsvi-1stage/* .
cd build/dc-syn

make
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