
Simulating Verilog RTL using Synopsys VCS

CS250 Tutorial 4 (Version 092509a)
September 25, 2009

Yunsup Lee

In this tutorial you will gain experience using Synopsys VCS to compile cycle-accurate executable
simulators from Verilog RTL. You will also learn how to use the Synopsys Waveform viewer to
trace the various signals in your design. Figure 1 illustrates the basic VCS toolflow and SMIPS
toolchain. For more information about the SMIPS toolchain consult Tutorial 3: Build, Run, and

Write SMIPS Programs.

VCS takes a set of Verilog files as input and produces a simulator. When you execute the simulator
you need some way to observe your design so that you can measure its performance and verify that it
is working correctly. There are two primary ways to observe your design: (1) you can use $display
statements in your Verilog RTL to output textual trace information, or (2) you can instruct the
simulator to automatically write transition information about each signal in your design to a file.
There is standard text format for this type of signal transition trace information called the Value
Change Dump format (VCD). Unfortunately, these textual trace files can become very large very
quickly, so Synopsys uses a proprietary compressed binary trace format called VCD Plus (VPD).
You can view VPD files using the Synopsys waveform viewer called Discovery Visual Environment
(DVE).

You will be using a simple unpipelined SMIPSv1 processor as your design example for this tutorial,
and thus you will also learn how to build and run test codes on the processor simulator. Figure 2
shows the block diagram for the example processor. Figure 1 shows the SMIPS toolchain which
starts with an SMIPS assembly file and generates a Verilog Memory Hex (VMH) file suitable to
run on the cycle-accurate simulator. This tutorial assumes you are familiar with the SMIPS ISA.
For more information please consult the SMIPS Processor Specification.

The following documentation is located in the course locker ~cs250/docs/manuals and provides
additional information about VCS, DVE, and Verilog.

• vcs-user-guide.pdf - VCS User Guide

• vcs-quick-reference.pdf - VCS Quick Reference

• vcs dve-user-guide.pdf - Discovery Visual Environment User Guide

• vcs ucli-user-guide.pdf - Unified Command Line Interface User Guide

• verilog-language-spec-1995.pdf - Language specification for the original Verilog-1995

• verilog-language-spec-2001.pdf - Language specification for Verilog-2001

Getting started

Before using the CS250 toolflow and SMIPS toolchain you must run the course setup script with
the following command.

% source ~cs250/tools/cs250.bashrc

CS250 Tutorial 4 (Version 092509a), Fall 2009 2

Libs

Cycle

Sim
Accurate

ASM
Source
Code

C
Source
Code

SMIPS toolchain

Execute Sim

VPD
Trace

Text
Output

DVE GUI

VMH

VCS

Verilog
Source

Verilog

Figure 1: VCS Toolflow and SMIPS Assembler Toolchain

CS250 Tutorial 4 (Version 092509a), Fall 2009 3

ir[15:0]

Reg
File

Data
Mem

va
l

rw

Cmp

eq
?

Instruction Mem
va

l

pc+4

branch
+4

Decoder
Control
Signals

tohost
tohost_en

testrig_tohost

ir[25:21]

ir[20:16]
Add

wdata
addr rdata

rf_wen

w
b_

se
l

ir[
20

:1
6]

PC

rd0pc
_s

el

rd1
Reg
File

>> 2

Sign
Extend

Figure 2: Block diagram for Unpipelined SMIPSv1 Processor

For this tutorial you will be using an unpipelined SMIPSv1 processor as your example RTL design.
You should create a working directory and copy files from the course locker using the following
commands.

% mkdir tut1

% cd tut1

% cp -R ~cs250/examples/v-smipsv1-1stage/* .

Before starting, take a look at the subdirectories in the project directory. All of your projects will
have a similar structure. Source RTL should be placed in the src directory and test input files
should be placed in the smips-tests directory. The build directory will contain all generated
content including simulators, synthesized gate-level Verilog, and final layout. In this course you
will always try to keep generated content separate from your source RTL. This keeps your project
directories well organized, and helps prevent you from unintentionally modifying your source RTL.
There are subdirectories in the build directory for each major step in the CS250 toolflow. These
subdirectories will contain scripts and configuration files necessary for running the tools required for
that step in the toolflow. For example, the build/vcs-sim-rtl directory contains a makefile which
can build Verilog simulators and run tests on these simulators. You should browse the source code
for the processor in src to become familiar with the design. The example code makes use of the
simple Verilog component library (VCLIB) located in ~cs250/install/vclib. VCLIB includes a
variety of muxes, flip-flops, latches, RAMs, memories, and queues. You are welcome to either use
the globally installed VCLIB or to create your own component library.

CS250 Tutorial 4 (Version 092509a), Fall 2009 4

Compiling the Simulator

In this section you will first see how to run VCS from the command line, and then you will see how
to automate the process using a makefile. To build the simulator you need to run the vcs compiler
with the appropriate command line arguments and a list of input Verilog files.

% cd build/vcs-sim-rtl

% vcs -PP +lint=all +v2k -timescale=1ns/10ps \

-v ~cs250/install/vclib/vcMuxes.v \

-v ~cs250/install/vclib/vcArith.v \

-v ~cs250/install/vclib/vcStateElements.v \

-v ~cs250/install/vclib/vcMemories.v \

../../src/smipsInst.v \

../../src/smipsProcCtrl.v \

../../src/smipsProcDpathRegfile.v \

../../src/smipsProcDpath_pstr.v \

../../src/smipsProc.v \

../../src/smipsCore_rtl.v \

../../src/smipsTestHarness_rtl.v

By default, VCS generates a simulator named simv. The -PP command line argument turns on
support for using the VPD trace output format. The +lint=all argument turns on Verilog warnings.
Since it is relatively easy to write legal Verilog code which is probably functionally incorrect, you
will always want to use this argument. For example, VCS will warn you if you connect nets with
different bitwidths or forget to wire up a port. Always try to eliminate all VCS compilation errors
and warnings. Since you will be making use of various Verilog-2001 language features, you need to
set the +v2k command line option so that VCS will correctly handle these new constructs. Verilog
allows a designer to specify how the abstract delay units in their design map into real time units
using the ‘timescale compiler directive. To make it easy to change this parameter you will specify
it on the command line instead of in the Verilog source. After these arguments you list the Verilog
source files. You use the -v flag to indicate which Verilog files are part of a library (and thus should
only be compiled if needed) and which files are part of the actual design (and thus should always
be compiled). After running this command, you should see text output indicating that VCS is
parsing the Verilog files and compiling the modules. Notice that VCS actually generates ANSI C
code which is then compiled using gcc. When VCS is finished you should see a simv executable in
the build directory.

Typing in all the Verilog source files on the command line can be very tedious, so you will use
makefiles to help automate the process of building your simulators. The following commands will
first delete the simulator you previously built, and then regenerate it using the makefile.

% rm -f simv

% make

CS250 Tutorial 4 (Version 092509a), Fall 2009 5

The make program uses the Makefile located in the current working directory to generate the file
given on the command line. Take a look at the Makefile located in build/vcs-sim-rtl. Makefiles
are made up of variable assignments and a list of rules in the following form.

target : dependency1 dependency2 ... dependencyN

command1

command2

...

commandN

Each rule has three parts: a target, a list of dependencies, and a list of commands. When a desired
target file is “out of date” or does not exist, then the make program will run the list of commands
to generate the target file. To determine if a file is “out of date”, the make program compares
the modification times of the target file to the modification times of the files in the dependency
list. If any dependency is newer than the target file, make will regenerate the target file. Locate
in the makefile where the Verilog source files are defined. Find the rule which builds simv. More
information about makefiles is online at http://www.gnu.org/software/make/manual.

Not all make targets need to be actual files. For example, the clean target will remove all gener-
ated content from the current working directory. So the following commands will first delete the
generated simulator and then rebuild it.

% make clean

% make simv

Building SMIPS Test Assembly Programs

A test program called smipsv1 example.S is located locally in the smips-tests directory. If you
want to add your own test programs, you would add them to this directory. There are additional
globally installed SMIPS assembly test programs located in ~cs250/install/smips-tests which
you can use for your lab assignments and projects. The following command will build all of the
local tests and run it on the SMIPSv2 ISA simulator.

% cd ../../smips-tests

% make

% make run

Please refer to Tutorial 3: Build, Run, and Write SMIPS Programs for more information about
building, running, and writing assembly test programs.

Running the Simulator and Viewing Trace Output

Now that you have learned how to build the simulator and how to build SMIPS test assembly
programs, you will learn how to execute SMIPS test assembly programs on the simulator. The
following command runs the local smipsv1 example.S test program on the simulator.

% cd ../build/vcs-sim-rtl

% ./simv +exe=../../smips-tests/smipsv1_example.S.vmh

CS250 Tutorial 4 (Version 092509a), Fall 2009 6

Try running a globally installed SMIPS test assembly program.

% cd ../build/vcs-sim-rtl

% ./simv +exe=$UCB_VLSI_HOME/install/smips-tests/smipsv1_addiu.S.vmh

You should see some textual trace output showing the state of the processor on each cycle. The
trace output includes the cycle number, reset signal, pc, instruction bits, register file accesses,
testrig tohost signal, and the disassembled instruction. The test program does a series of loads and
verifies that the loaded data is correct. After running all the tests, the program writes a one into
the tohost coprocessor register to indicate that all tests have passed. If any test fails, the program
will write a number greater than one into the tohost register. The test harness waits until the
testrig tohost signal is non-zero and displays either PASSED or FAILED as appropriate.

In addition to the textual output, you should see a vcdplus.vpd in your build directory. Use the
following command to start the Synopsys Discovery Visual Environment (DVE) waveform viewer
and open the generated VPD file.

% dve -vpd vcdplus.vpd &

Figure 3 shows the DVE Hierarchy window. You can use this window to browse the design’s module
hierarchy. Choose Window > New > Wave View to open a waveform viewer (see Figure 4). To
add signals to the waveform window you can select them in the Hierarchy window and then right
click to choose Add to Waves > Recent.

Add the following signals to the waveform viewer.

• smipsTestHarness.clk

• smipsTestHarness.core.proc.dpath.pc mux sel

• smipsTestHarness.core.proc.dpath.pc

• smipsTestHarness.dasm.minidasm

• smipsTestHarness.core.proc.dpath.rf raddr0

• smipsTestHarness.core.proc.dpath.rf rdata0

• smipsTestHarness.core.proc.dpath.rf raddr1

• smipsTestHarness.core.proc.dpath.rf rdata1

• smipsTestHarness.core.proc.dpath.rf wen

• smipsTestHarness.core.proc.dpath.rf waddr

• smipsTestHarness.core.proc.dpath.rf wdata

• smipsTestHarness.testrig tohost

The dasm module is a special tracing module which includes Verilog behavioral code to disassemble
instructions. The minidasm signal is a short text string which is useful for identifying which
instruction is executing during each cycle. To display this signal as a string instead of a hex
number, right click on the signal in the waveform viewer. Choose Set Radix > ASCII from the
popup menu. You should now see the instruction type in the waveform window. Use Zoom >

Zoom Out to zoom out so you can see more of the trace at once. Figure 5 shows the waveforms
in more detail. You should be able to identify the addiu instructions correctly loading the register
file with various constants and the lw instructions writing the correct load data into the register

CS250 Tutorial 4 (Version 092509a), Fall 2009 7

Figure 3: DVE Module Hierarchy Window

Figure 4: DVE Waveform Window

CS250 Tutorial 4 (Version 092509a), Fall 2009 8

Figure 5: Waveforms for unpipelined SMIPSv1 processor executing smipsv1 lw.S

file. The pc mux sel control signal should remain low until the very end of the program when the
code starts into an infinite loop after setting the tohost register to one. After reset, why is the
rf rdata1 signal undefined for so many more cycles than rf rdata0?

The Verilog test harness provides two optional command line arguments in addition to the required
+exe argument as shown below:

simv +exe=<vmh-filename>

+max-cycles=<integer>

+verbose=<0|1>

By default, the harness will run for 2,000 cycles. This limit helps prevent bugs in test programs
or the RTL from causing the simulator to run forever. When there is a timeout, the harness
will display *** FAILED *** timeout. The +max-cycles argument allows you to increase this
limit and is required for longer running programs. If the +verify argument is set to one (the
default), then the harness will execute in “verification mode”. This means that the harness waits
until testrig tohost is non-zero and then outputs either PASSED or FAILED as appropriate. If
the +verify argument is set to zero, then the harness will execute in “performance mode”. This
means that the harness waits until testrig tohost is non-zero and then it outputs a collection of
statistics. You should use “verification mode” for running test programs which verify the correctness
of your processor, and you should use “performance mode” for running benchmarks to evaluate the
performance of your processor. Try running the the smipsv1 addiu.S program in “performance
mode”. You should observe that the Instructions per Cycle (IPC) is one. This is to be expected
since the processor you are evaluating is an unpipelined processor with no stalls.

CS250 Tutorial 4 (Version 092509a), Fall 2009 9

The following makefile target will build all of the test programs, run them on the processor simu-
lator, and output a summary of the results.

% make run

Review

The following sequence of commands will setup the CS250 toolflow and the SMIPS toolchain,
checkout the SMIPSv1 processor example, build local SMIPS test assembly programs, build the
simulator, run all assembly tests, and report the results.

% source ~cs250/tools/cs250.bashrc

% mkdir tut4

% cd tut4

% cp -R ~cs250/examples/v-smipsv1-1stage/* .

% cd smips-tests

% make

% make run

% cd ../build/vcs-sim-rtl

% make

% make run

Acknowledgements

Many people have contributed to versions of this tutorial over the years. The tutorial was originally
developed for 6.375 Complex Digital Systems course at Massachusetts Institute of Technology by
Christopher Batten. Contributors include: Krste Asanović, John Lazzaro, Yunsup Lee, and John
Wawrzynek. Versions of this tutorial have been used in the following courses:

• 6.375 Complex Digital Systems (2005-2009) - Massachusetts Institute of Technology

• CS250 VLSI Systems Design (2009) - University of California at Berkeley

